

Ord: _____

Sets and Logic
MHF3202 8768

Class-V

Prof. JLF King
01Feb2017

V5: _____ 75pts

V6: _____ 45pts

V7: _____ 45pts

V5: Short answer. Show no work.Write **DNE** in a blank if the described object does not exist or if the indicated operation cannot be performed.**a** Prof. King believes that writing in complete, coherent sentences is crucial in communicating Mathematics, improves posture, and whitens teeth. one:True! Yes! **wH'at S a? sEnTENcE****b** In $[5x^2 + y + z^3]^{20}$,

compute these coeffs:

Coeff($x^6 z^8$) = _____.Coeff($y^5 z^6$) = _____.

[Write your answer as a product of powers and multinomial-coeffs.]

HONOR CODE: *"I have neither requested nor received help on this exam other than from my professor (or his colleague)."*
Name/Signature/Ord

Ord: _____

c The physics lab has atomic *zinc, tin, silver and gold*. I'm allowed to take 6 atoms, so I have [expressed as single integer] many possibilities.

_____.

d Sequence $\vec{L} := (L_n)_{n=0}^{\infty}$ is defined by $L_0 := 5$, $L_1 := 4$, and $\forall n \in \mathbb{N}: L_{n+2} = L_{n+1} + 6L_n$. This implies $\forall k \in \mathbb{N}: L_k = [P \cdot \alpha^k + Q \cdot \beta^k]$, for real numbers $\alpha =$ _____ $< \beta =$ _____.OYOP: In grammatical English **sentences**, write your essays on every **third** line (usually), so that I can easily write between the lines. Start each essay on a new sheet-of-paper. Please number the pages "1 of 57", "2 of 57" ... (or "1/57", "2/57"...) I suggest you put your name on each sheet.**V6:** Interval-of-integers $\mathbf{J} := [101..200)$ has 99 elements. A subset $S \subset \mathbf{J}$ is **Big** if $|S| = 51$. Subset $S \subset \mathbf{J}$ is **Perfect** if there exist *distinct* members $x, y \in S$ st. $x + y = 300$.Prove that **Big** \Rightarrow **Perfect**. [Hint: PHP. Carefully specify what your pigeon-holes are.]**V7:** Let $T_d := 18^d + 1$ for $d = 3, 5, 7, 9, 11, \dots$. Prove that each such T_d is composite.[Hint: Look at T_{Odd} mod- N , for an appropriate N .]