

Staple!

Sets and Logic
MHF3202 2787

Class-V

Prof. JLF King
Touch: 17Nov2018

OYOP: For your 2 Essays: *Write your grammatical English sentences on every third line, so that I can easily write between the lines. Start each essay on a new sheet of paper.*

V1: _____ 65pts

V2: _____ 85pts

V3: _____ 95pts

Total: _____ 245pts

V1: Cantor Diagonalization Thm: For each set B , there does not exist a surjection $B \rightarrow \mathcal{P}(B)$.

V2: For $N \in \mathbb{Z}_+$, suppose $\Gamma = (V, E)$ is a complete digraph on N vertices. I.e, we have N towns, with each pair connected by a one-way road.

From a Γ -**good** town $w \in V$ we can legally bike to every town. A town w is Γ -**great** if we can get to each town with a path of length ≤ 2 .

GD Prove that each such Γ has a Γ -good town.

GT Prove that each such Γ has a Γ -great town.

[Hint: Induction on N , works. In addition to text, your essay should have pictures illustrating your argument; they should be large. When referring to a good/great town, be careful to specify w.r.t. *what* network.]

V3: Short answer. Show no work.

Write **DNE** in a blank if the described object does not exist or if the indicated operation cannot be performed.

a $\mathcal{P}(\mathcal{P}(3\text{-stooges}))$ has _____ many elements.

b Let \mathcal{P}_∞ denote the family of all *infinite* subsets of \mathbb{N} . Define relation \approx on \mathcal{P}_∞ by: $A \approx B$ IFF $A \cap B$ is infinite. Stmt “*This \approx is an equivalence-relation*” is: T F

c An explicit bijection $F: \mathbb{N} \leftrightarrow \mathbb{Z}$ is this:

When n is *even*, then $F(n) :=$ _____.

When n is *odd*, then $F(n) :=$ _____.

d To the interval $J := (-\frac{\pi}{2}, \frac{\pi}{2})$, define a bijection $g: (0, 1) \leftrightarrow J$ by $g(x) :=$ _____.

Using this g and a trigonometric fnc, define a bijection $h: (0, 1) \leftrightarrow \mathbb{R}$ by $h(x) :=$ _____.

e 16 and 3 and 7

The map $f(k, n) := 2^k \cdot [1 + 2n]$ is a bijection from $\mathbb{N} \times \mathbb{N} \leftrightarrow \mathbb{Z}_+$. And $f^{-1}(112) = ($ _____, _____ $)$.