

Plex
MAA4402 8436

Class-V

Prof. JLF King
Wedn, 06Oct2021**Notation.** All sets are subsets of \mathbb{C} . For sets B and E , the difference set is

$$B \setminus E := \{x \in B \mid x \notin E\}.$$

The complement of E is $E^c := \mathbb{C} \setminus E$.For short-answer: Write **DNE** if the object does not exist or the operation cannot be performed. NB: **DNE** $\neq \{\} \neq 0$.**V1:** Short answer. Show no work. **C-plane**10 10 **a** Number $[i + \sqrt{3}]^{70} = x + iy$, for realnumbers $x = \dots$ and $y = \dots$.

[Multiplying complexes multiplies their moduli (absolute-values), and adds their angles.]

15 10 **b** Fnc $u(x, y) := \cos(y \cdot x) - 7x$ maps $\mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}$. Its Laplacian is $\Delta(u)(x, y) = \dots$.There exists function $v: \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}$ such that $f(x + iy) := u(x, y) + iv(x, y)$ is holomorphic. $T \quad F$ 15 10 **c** Write $\cos(-3i)$, which is real, ITOf $\exp()$ and *finite*add/sub/mul/div: $\cos(-3i) = \dots$.And $\cos(-3i)$ lies in circle the correct interval $(-\infty, -\frac{1}{5}] \quad (\frac{-1}{5}, \frac{1}{5}] \quad (\frac{1}{5}, 2] \quad (2, 5] \quad (5, 15] \quad (15, 45] \quad (45, \infty)$ 25 **d** Compute the real $\alpha = \dots$ such that

$$* : 3^\alpha \cdot \sum_{k=0}^{1801} \binom{1801}{k} 2^k = \sum_{j=0}^{892} \binom{892}{j} 8^j.$$

[Hint: The Binomial Theorem]

1 9 10 **e** The number of permutations of "PREPPER", as a multinomial coefficient, is $\frac{\text{numeral}}{\dots}$.**V2:** Short answer. **Metric space stuff**25 **f**

The empty-set is connected:

 Punctured ball $P\text{Bal}_2(3i)$ is connected: Sph₂(5i) \cap Sph₂(i) is connected: Sph₂(4i) \cup Sph₂(-i) is connected: Sph₂(5i) \cup CldBal₂(i) is closed: 25 **g**All these sets are non-empty: Sets U and V are open. Sets K , E and E_n are closed. Sets A and B are each path-connected. $\exists q \in [A \cap B]$; so $A \cap B$ is path-connected: Union $\bigcup_{n=1}^{\infty} E_n$ is closed: Set $U \setminus K$ is open: Set $U \cup K$ is open: Set $E \cap K$ is closed: 20 **h**Cross-ratio $[z, 2+i, 4i, 3] = \frac{az + b}{cz + d}$, where $a = \dots, b = \dots, c = \dots, d = \dots$.OYOP: In grammatical English **sentences**, write your essay on every 2nd line (usually), so I can easily write between the lines.**V3:** For reals S, α, β, T , consider equation

$$\dagger : S[x^2 + y^2] + \alpha x + \beta y + T = 0$$

in $\mathbb{R} \times \mathbb{R}$. Show that (\dagger) describes a **gen-circle** [i.e, a circle-or-line; a **generalized-circle**] IFF

$$* : \alpha^2 + \beta^2 > 4ST.$$

End of Class-V

V1: _____ 115pts**V2:** _____ 70pts**V3:** _____ 45pts**Total:** _____ 230pts**HONOR CODE:** "I have neither requested nor received help on this exam other than from my professor (or his colleague)."

Ord: _____