

[You may use `sinh()`, `cosh()`, `asinh()`, `acosh()` if necessary.
 Write your answer as simply as possible.]

Note. Write unambiguously e.g, $1/a + b$ should be bracketed either $[1/a] + b$ or $1/[a + b]$, as appropriate. (Be careful with negative signs!)

Use “ $f(x)$ notation” when writing fncs; in particular, for trig and log fncs. E.g, write “ $\sin(x)$ ” rather than the horrible $\sin x$ or $[\sin x]$.

V1: Show no work.

10 a See Canvas, (V1a).

10 b The visual representation of \mathbb{C} is sometimes called “the ? plane”, where ? is **Circle**: **Unreal** **Higher**
Snakes-on-a **Argand** **Krypton** **Radon** **Xenon**
Euler **Gauss** **Please-x** **y-com** **Air** **Sea** **De**
 Rain-in-Spain-stays-mainly-on-the .

20 c A certain type of bacteria increases continuously at a rate proportional to the number present. Ten hours ago there were 3,000, and now there are 12,000. In five hours there will be bacteria.

.....

10 25 d The name of the curve that a perfectly flexible cable takes in a uniform gravitational field is **catenary** ... which is what results when a cat eats a canary .

On a planet with surface-acceleration $10 \frac{\text{m}}{\text{sec}^2}$, there is a hanging cable. The **cable-vertex** [where the cable-tangent is horizontal] is at $x = 0\text{m}$. At the vertex, the cable-tension is

$$T := 5\text{N} . \quad (\text{Newton} = \text{N} = [\text{kg}\cdot\text{m}]/[\text{sec}^2].)$$

The cable's mass-density is $2 \frac{\text{kg}}{\text{m}}$.

Let $h(x)$ denote the height of the cable above x , as we did in class.

Using **numbers** and **units** [recall that **kg=kilogram**, **m=meter**, **sec=second**] write the **differential equation** we derived in class that $h()$ satisfies:

.....
 The cable-rise $h(2\text{m}) - h(0\text{m})$ equals **U** meters, where $U =$

15 e Complex number z satisfies $\cosh(z) = 3$. Thus $[\cosh(z)]^2 + [\sinh(z)]^2 =$

25 f A particular soln $y = y(t)$ to

$$\dagger: \quad [\mathbf{D} - 5\mathbf{I}]^5(y) = \text{e}^{3t}$$

is $y(t) =$

[Express your answer in simplest form.]

10 g “I have neither requested nor received help on this exam other than from my professor.”

V1: _____ 150pts

Total: _____ 150pts