

Plex
MAA4402 8436

Class-Prac-V

Prof. JLF King
04Oct2021**Notation.** All sets are subsets of \mathbb{C} .For sets B and E , the difference set is

$$B \setminus E := \{x \in B \mid x \notin E\}.$$

The complement of E is $E^c := \mathbb{C} \setminus E$.For short-answer: Write **DNE** if the object does not exist or the operation cannot be performed. NB: **DNE** $\neq \{\} \neq 0$.**Prac-V1:** Short answer. Show no work. \mathbb{C} -plane

a Blanks in \mathbb{R} . So $\frac{1}{2+3i} = \frac{1}{2+3i} + i \cdot \left[\frac{1}{2+3i} \right]$.
Thus $\frac{5-i}{2+3i} = \frac{5-i}{2+3i} + i \cdot \left[\frac{5-i}{2+3i} \right]$.

Soln: Note $\omega := 2+3i$ is not zero. Thus $\frac{1}{\omega} = \frac{\bar{\omega}}{\omega\bar{\omega}} = \frac{\bar{\omega}}{|\omega|^2}$.
So $\frac{1}{\omega} = \frac{\operatorname{Re}(\omega)}{|\omega|^2} + i \cdot \frac{-\operatorname{Im}(\omega)}{|\omega|^2} = \frac{2}{13} + i \cdot \frac{-3}{13}$.

With $\alpha := 5-i$, note $|\omega|^2 \cdot \frac{\alpha}{\omega} = \bar{\omega}\alpha = 7-17i$. Whence

$$\frac{\alpha}{\omega} = \frac{7}{13} + i \frac{-17}{13}.$$

For z complex, $\operatorname{Im}(z) = \operatorname{Im}(z, \bar{z}) = \frac{z - \bar{z}}{2i}$.

b Complex number $[x+iy]^2 = -9i$, for real numbers $x > y$, where $x = \frac{3}{\sqrt{2}}$ and $y = -\frac{3}{\sqrt{2}}$.

Sqroot: Since $-i = \exp(i \cdot \frac{-\pi}{2})$, one sqroot of $-i$ is $\exp(i \cdot \frac{-\pi}{4}) \stackrel{\text{note}}{=} \frac{1-i}{\sqrt{2}}$. Multiplying by $\sqrt{9} = 3$ gives a particular sqroot of $-9i$, namely $\frac{3}{\sqrt{2}} \cdot [1-i]$.

c Reals $x =$ _____ and $y =$ _____

where $x+iy = [1+i]^{166}$. [Hint: Multiplying complexes multiplies their moduli, and adds their angles.]

Power-soln. As $[1+i]^2 = 2i$, our $\alpha := [1+i]^{166}$ equals $[2i]^{83}$. Note $i^{83} = i^3 = -i$. Thus $\alpha = 2^{83} \cdot [-i]$.

d Distance $|\exp[i(\pi/4)] - 2i| =$ _____.

Soln: With $R := \frac{1}{\sqrt{2}}$ [Reciprocal], note $\exp[i(\pi/4)] = [1+i]R$.
With $D := |[1+i]R - 2i|$, then D^2 equals

$$\begin{aligned} [R-0]^2 + [R-2]^2 &= R^2 + [R^2 + 4 - 4R] \\ &= 1 + 4 - 4R = 5 - 2\sqrt{2}. \end{aligned}$$

Thus, $D = \sqrt{5 - 2\sqrt{2}}$.

e Value $|\exp[i\theta] - i| = 2$, where angle $\theta =$ _____.

Soln: Points i and $\exp[i\theta]$ are on the unit-circle, C . [This, since θ is an angle, thus is real]. The diameter of C is 2. The only C -point at distance 2 from i is its antipodal point, $-i$. Thus $\theta = -\frac{\pi}{2}$.

f The **Laplacian** of a twice-differentiable fnc $h: \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}$, is $\frac{d}{dx}(\frac{dh}{dx}) + \frac{d}{dy}(\frac{dh}{dy}) \stackrel{\text{notation}}{=} h_{xx} + h_{yy}$.

g Fnc $u(x, y) := \cos(y \cdot x) - 7x$ maps $\mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}$. Its Laplacian is $[\Delta(u)](x, y) = -\cos(y \cdot x) \cdot [y^2 + x^2]$.

There exists function $v: \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}$ such that $f(x+iy) := u(x, y) + iv(x, y)$ is holomorphic. $T(F)$

Lapl Soln: Let $C := \cos(y \cdot x)$ and $S := \sin(y \cdot x)$. Note $\Delta(u) = \Delta(C) = C_{xx} + C_{yy}$, since the $7x$ is killed-off by 2nd-differentiation.

The Chain rule gives $C_x = -S \cdot y$. Hence $C_{xx} = -C \cdot y^2$. As C is symmetric in x and y , we get for free that $C_{yy} = -C \cdot x^2$. Adding, $\Delta(u) = \Delta(C) = -\cos(y \cdot x) \cdot [y^2 + x^2]$.As $\Delta(u) \neq 0$, our u is not harmonic. Hence, by our thm from class, this u is not the real part of a holomorphic fnc.

h The std.pic. of \mathbb{C} is called the plane.
 Set $w := \log(3) \cdot [2 + \mathbf{i}]$. So $|w| = \dots$.
 $\operatorname{Re}(e^w) = \dots$ and $|e^w| = \dots$.

i Write $\cos(-2\mathbf{i})$, which is real,
 ITOf $\exp()$ and *finite*
 add/sub/mul/div: $\cos(-2\mathbf{i}) = \dots$

And $\cos(-2\mathbf{i})$ lies in circle the correct interval

$(-\infty, -\frac{1}{5}]$ $(-\frac{1}{5}, \frac{1}{5}]$ $(\frac{1}{5}, 2]$ $(2, 5]$ $(5, 15]$ $(15, 45]$ $(45, \infty)$

Soln: Recall that $\cos(z) = [e^{iz} + e^{-iz}]/2$, for all $z \in \mathbb{C}$. Hence $\cos(-2\mathbf{i})$ equals

$$\frac{1}{2}e^2 + \frac{1}{2}e^{-2}.$$

The $e^{-2}/2$ term is negligible, here. As $2 < e < 3$, so $4 < e^2 < 9$. Thus $2 < \frac{1}{2}e^2 < \frac{9}{2}$.

j Value $\operatorname{Log}([\mathbf{i}e]^3) = \dots$.

Soln: In polar form, $[\mathbf{i}e]^3 = -e^3\mathbf{i}$ is $e^3 \cdot \operatorname{cis}(-\frac{\pi}{2})$. So its Log is $3 - \frac{\pi}{2}\mathbf{i}$, since $\log(e^3) = 3$.

[P.V of $[1 + \mathbf{i}]^{\mathbf{i}} = r \cdot \exp(\mathbf{i}\theta)$, where $r = \dots$ and $\theta = \dots$, with $r > 0$ and θ real.]

P.V: As $1 + \mathbf{i} = \sqrt{2} \cdot \operatorname{cis}(\frac{\pi}{4})$, its Log is $\log(\sqrt{2}) + \frac{\pi}{4}\mathbf{i}$. So

$$\mathbf{i} \cdot \operatorname{Log}(1 + \mathbf{i}) = -\frac{\pi}{4} + \mathbf{i} \cdot \log(\sqrt{2}).$$

Applying $\exp()$ says $[1 + \mathbf{i}]^{\mathbf{i}}$ equals $r \cdot \exp(\mathbf{i}\theta)$, where

$$r = e^{-\pi/4} \quad \text{and} \quad \theta = \log(\sqrt{2}) = \log(2)/2.$$

Prac-V2: Short answer. Metric space stuff

k On a set Ω , a *metric* is a map $d: \Omega \rightarrow [0, \infty)$ such that $\forall w, x, y, z \in \Omega$:

MS1: $d(w, x) = 0$ IFF $w = x$; [Zero-distance exactly when same point]

MS2: $d(z, y) = d(y, z)$; [Metric d is symmetric]

MS3: $d(w, y) \leq d(w, x) + d(x, y)$; [Metric d satisfies the triangle inequality]

l A subset $S \subset \mathbb{C}$ is *path-connected* if [A path connects every pair of points in S]

... if for all points $p, q \in S$, there exists a map $f: [0, 1] \rightarrow S$ which is **continuous**, with $f(0) = p$ and $f(1) = q$.

m The empty-set is connected:

Punctured ball $\operatorname{PBal}_2(3\mathbf{i})$ is connected:

T F

$\operatorname{Sph}_2(5\mathbf{i}) \cap \operatorname{Sph}_2(\mathbf{i})$ is connected:

T F

$\operatorname{Sph}_2(4\mathbf{i}) \cup \operatorname{Sph}_2(-\mathbf{i})$ is connected:

T F

$\operatorname{Sph}_2(5\mathbf{i}) \cup \operatorname{CldBal}_2(\mathbf{i})$ is closed:

T F

Soln: In \mathbb{C} , a punctured-ball is path-connected, so is certainly connected.

Since $|5\mathbf{i} - \mathbf{i}| = 2 \cdot 2$, intersection $\operatorname{Sph}_2(5\mathbf{i}) \cap \operatorname{Sph}_2(\mathbf{i})$ is singleton $\{3\mathbf{i}\}$; connected. But $|4\mathbf{i} - -\mathbf{i}| > 2 \cdot 2$, so union $\operatorname{Sph}_2(4\mathbf{i}) \cup \operatorname{Sph}_2(-\mathbf{i})$ comprises two *not*-touching circles, hence is disconnected.

Recall that the union of *finitely many* closed sets is closed. Hence $\operatorname{Sph}_2(5\mathbf{i}) \cup \operatorname{CldBal}_2(\mathbf{i})$ is closed.

n All these sets are non-empty: Sets U and V are open. Sets K , E and E_n are closed. Sets S and T are each connected.

Set $U \setminus K$ is open:

AT AF **Nei**

Set $U \cup K$ is open:

AT AF **Nei**

Set $E \cap K$ is closed:

AT AF **Nei**

Union $\bigcup_{n=1}^{\infty} E_n$ is closed:

AT AF **Nei**

$\exists q \in [S \cap T]$; so $S \cup T$ is connected:

AT AF **Nei**

S \cup T is connected. [Were “connected” replaced by the stronger “path-connected”, this problem would be almost automatic.]

With $\mathbf{B} := S \cup T$, consider \mathbb{C} -open sets $\mathcal{U} \sqcup \mathcal{V} \supset \mathbf{B}$. [Recall that \sqcup is our *disjoint-union* symbol; so $\mathcal{U} \cap \mathcal{V}$ is empty.]

Since open sets \mathcal{U}, \mathcal{V} have $\mathcal{U} \sqcup \mathcal{V} \supset S$, the connectedness of S forces either $\mathcal{U} \sqcap S$ (disjointness) or $\mathcal{V} \sqcap S$.

WLOG, $\mathcal{V} \ni q$; so $\mathcal{V} \cap S$ is non-empty, whence $\mathcal{U} \sqcap S$. The same argument applies to connected set T , since $T \ni q$. Thus $\mathcal{U} \sqcap T$. Hence pair $(\mathcal{U}, \mathcal{V})$ does not separate \mathbf{B} , as \mathcal{U} misses \mathbf{B} altogether.

o Let $S := \text{PBal}_2(3\mathbf{i})$.

Its boundary

is $\partial(S) = \text{Sph}_2(3\mathbf{i}) \cup \{3\mathbf{i}\}$.

[You may use our ball/sphere notation as well as \cup , \cap , complement and set-braces, to describe your answer.]

Prac-V3: Short answer. Binomials/multinomials.

p Binomial coefficient $\binom{7}{4} = \binom{7}{3} = \frac{7 \cdot 6 \cdot 5}{3 \cdot 2 \cdot 1} = 35$.

q Multinomial coefficient $\binom{9}{4, 2, 3} = \dots = \dots$.

[Note: Write your ans. ITOf factorials, then also write it as a single integer, or product of two, without factorials.]

Nomial Soln: Directly, $\binom{9}{4, 2, 3} = \frac{9!}{4! \cdot 2! \cdot 3!}$. Com-

puting, $\binom{9}{4, 2, 3} = \binom{9}{4} \cdot \binom{5}{2} = \frac{9 \cdot 8 \cdot 7 \cdot 6}{4 \cdot 3 \cdot 2 \cdot 1} \cdot \frac{5 \cdot 4}{2 \cdot 1}$.

Hence, $\binom{9}{4, 2, 3} = 9 \cdot 2 \cdot 7 \cdot 5 \cdot 2 = [63 \cdot 2] \cdot 10 = 1260$.

(`multinom-coeff 9 '(4 2 3)) => 1260`

r Compute the real $\alpha = \dots$ such that

$\ast: 3^\alpha \cdot \sum_{k=0}^{4000} \binom{4000}{k} 2^k = \sum_{j=0}^{1995} \binom{1995}{j} 8^j$.

[Hint: The Binomial Theorem]

Binom Soln: LhS(*) equals $3^\alpha \cdot [2+1]^{4000} = 3^{\alpha+4000}$.

RhS(*) equals $[8+1]^{1995} \stackrel{\text{note}}{=} 3^{[2 \cdot 1995]}$. Consequently,

$$\alpha = [2 \cdot 1995] - 4000 = -10.$$

s As a single numeral, \dots is the following alternating sum:

$$\ast: 1 - 3 \cdot \binom{9}{1} + 9 \cdot \binom{9}{2} - 27 \cdot \binom{9}{3} + 81 \cdot \binom{9}{4} - \dots - 3^9 \cdot \binom{9}{9}.$$

[Hint: First determine: Is the value positive, zero, or negative.]

Soln: Courtesy the Binomial theorem, this sum equals $[1 + -3]^9$, i.e. $[-2]^9 = -512$.

Details: Sum (*) equals $\sum_{k=0}^9 1^{9-k} \cdot (-3)^k \cdot \binom{9}{k}$.

Prac-V4: Short answer. **LFT** = Linear-fractional transformation.

t With $f(z) := \frac{3z+2}{2z+5}$, then $f^{-1}(z) := \frac{az+b}{cz+d}$ where
 $a= \underline{\dots}$, $b= \underline{\dots}$, $c= \underline{\dots}$, $d= \underline{\dots}$.

u Cross-ratio $[z, 2+i, 4i, 5] = \frac{az+b}{cz+d}$ where
 $a= \underline{\dots}$, $b= \underline{\dots}$, $c= \underline{\dots}$, $d= \underline{\dots}$.

v The point $p := 2+7i$ goes, under stereographic projection, to (x, y, z) on the RS, where
 $x= \underline{\dots}$, $y= \underline{\dots}$, $z= \underline{\dots}$.

OYOP: In grammatical English **sentences**, write your essays on every 2nd line (usually), so I can easily write between the lines.

Essay-V5: Below, $h: \mathbb{C} \rightarrow \mathbb{C}$.

α Suppose h is differentiable at the point $3+2i$. Writing h in real and imaginary parts, $h(x+iy) = u(x, y) + iv(x, y)$, state the Cauchy-Riemann eqns for h at $3+2i$.

State C-R. Using u_x for $\frac{\partial u}{\partial x}$ etc., the C-R eqns for h at $3+2i$ are $u_x(3, 2) = v_y(3, 2)$, $u_y(3, 2) = -v_x(3, 2)$.

β Suppose h is differentiable at a point $z \in \mathbb{C}$. Carefully derive the Cauchy-Riemann eqns, directly from the defn of “differentiable”.

Derive C-R. Firstly, for h to be diff'able at z means: Our h is defined in a nhbd of z , and $\lim_{\Delta z \rightarrow 0} \frac{h(z+\Delta z) - h(z)}{\Delta z}$ exists in \mathbb{C} .

Let $w := h(z)$ and $\Delta w := h(z + \Delta z) - h(z)$.

CASE: Pure real: $\Delta z := \Delta x$ Computing, Δw equals

$$u(x + \Delta x, y) + iv(x + \Delta x, y) - [u(x, y) + iv(x, y)] \\ = [u(x + \Delta x, y) - u(x, y)] + i[v(x + \Delta x, y) - v(x, y)].$$

Hence, $\frac{\Delta w}{\Delta z}$ equals

$$\frac{u(x + \Delta x, y) - u(x, y)}{\Delta x} + i \cdot \frac{v(x + \Delta x, y) - v(x, y)}{\Delta x}.$$

Sending $\Delta x \rightarrow 0$ yields that

$$\dagger: \quad \lim_{\Delta z \rightarrow 0} \frac{\Delta w}{\Delta z} = u_x(x, y) + i \cdot v_x(x, y).$$

CASE: Pure imag: $\Delta z := i\Delta y$ Our Δw equals

$$[u(x, y + \Delta y) - u(x, y)] + i[v(x, y + \Delta y) - v(x, y)].$$

$$\text{So } \frac{\Delta w}{\Delta z} \text{ equals } \frac{u(x, y + \Delta y) - u(x, y)}{i\Delta y} + i \cdot \frac{v(x, y + \Delta y) - v(x, y)}{i\Delta y}, \text{ i.e.} \\ -i \cdot \frac{u(x, y + \Delta y) - u(x, y)}{\Delta y} + \frac{v(x, y + \Delta y) - v(x, y)}{\Delta y}.$$

Launching $\Delta y \rightarrow 0$ reveals that

$$\ddagger: \quad \lim_{\Delta z \rightarrow 0} \frac{\Delta w}{\Delta z} = -i \cdot u_y(x, y) + v_y(x, y).$$

The C-R equations are $\text{Re}(\text{RhS}(\dagger)) = \text{Re}(\text{RhS}(\ddagger))$ and $\text{Im}(\text{RhS}(\dagger)) = \text{Im}(\text{RhS}(\ddagger))$, equating Re & Im parts. **QED**

Essay-V6: For reals α, P, Q, ω , consider equation

†: $\alpha[x^2 + y^2] + Px + Qy + \omega = 0$

in $\mathbb{R} \times \mathbb{R}$. Show that (†) describes a *gen-circle* [i.e, a *circle-or-line*; a *generalized-circle*] IFF

*: $P^2 + Q^2 > 4\alpha\omega$.

V1: _____ 000pts

V2: _____ 000pts

V3: _____ 000pts

V4: _____ 000pts

V5: _____ 000pts

V6: _____ 000pts

Total: _____ 0pts

HONOR CODE: *"I have neither requested nor received help on this exam other than from my professor (or his colleague)."*

Ord:

.....