

Closure properties of the class of Uniform Sweeping-out transformations

Jonathan L. King*

University of Florida, Gainesville 32611-2082, squash@math.ufl.edu

ABSTRACT. Uniform sweeping-out is closed under countable cartesian product and under inverse limits.

A measure-preserving transformation $(S: X, \mu)$ on a probability space is ***uniform sweeping-out*** if for any set A of positive mass and any ε there exists N such that: Any collection \mathbb{K} of integers will satisfy

$$\mu\left(\bigcup_{k \in \mathbb{K}} S^k A\right) > 1 - \varepsilon$$

if $\#\mathbb{K} \geq N$. Nat Friedman introduced this property in [F]. Our goal here is to affirmatively answer a question of Friedman by showing that the class of uniform sweeping-out transformations is closed under countable cartesian product. The proof is a second application of the conditional expectation argument of [K] followed by a counting argument. I am indebted to Nat Friedman and Dan Rudolph who pointed out that uniform sweeping-out has a “mixinglike” characterization. This provoked the “lightly-mixing” characterization which is (C0) below and suggested dusting off the argument which shows that the class of lightly-mixing maps is closed under cartesian product. It is not known (in the category of weak-mixing transformations) whether uniform sweeping-out is implied by the existence of a dense family of sets A each of which sweeps-out uniformly.

Our cartesian product result appears now, rather than in 1988 when it was done, because it is now known that uniform sweeping-out is strictly weaker than mixing. (That mixing implies u.s.o appears in [F].) Terry Adams [A] has recently announced that the lightly-mixing example of [F,K] has the stronger uniform sweeping-out property. Yet it is not mixing; indeed, not even partial-mixing.

A “lightly-mixing” characterization. Each of the following two properties is equivalent to uniform sweeping-out. For a $\beta \in [0, 1]$ let $\text{Indices}_\beta(A, B)$ represent the set of indices k satisfying $\mu(S^k A \cap B) \leq \beta$. The function $\text{Zero}(\cdot, \cdot)$ below is a uniform bound on the cardinality of such a

*Partially supported by

set of indices. In the sequel δ and ε are numbers in $(0, 1)$. The phrase $a := b$ means that the expression b *defines* the (new) symbol a .

(C0) *For any set A of positive mass, any ε , there exists $M := \text{Zero}(A, \varepsilon)$ such that for any set B with $\mu(B) \geq \varepsilon$:*

$$\#\text{Indices}_0(A, B) < M.$$

If S satisfies (C0) then, given any collection \mathbb{K} with $\#\mathbb{K} \geq M$, let B be the complement of the union $\bigcup_{k \in \mathbb{K}} S^k A$. Were $\mu(B)$ at least ε we could apply (C0) to obtain a contradiction. Hence any M iterates of A sweep out more than $1 - \varepsilon$ of the space.

A similar argument shows the converse, that uniform sweeping-out implies (C0). \blacklozenge

(C1) *For any set A of positive mass, any ε , there exists $M := \text{Small}(A, \varepsilon)$ and positive number $\delta := \text{Size}(A, \varepsilon)$ such that for any set B with $\mu(B) \geq \varepsilon$:*

$$\#\text{Indices}_\delta(A, B) < M.$$

Evidently (C1) implies (C0). Conversely, fix ε , A , and $M := \text{Zero}(A, \varepsilon/2)$. Set $\delta := \varepsilon/2M$. Fix any B of mass at least ε . Suppose there were a collection \mathbb{K} , $\#\mathbb{K} = M$, of indices k such that $\mu(S^k A \cap B) \leq \delta$. Then the difference set

$$B' := B \sim \bigcup_{k \in \mathbb{K}} S^k A$$

has mass at least $\varepsilon/2$. Yet $\text{Indices}_0(A, B')$ contains \mathbb{K} , a contradiction. We conclude that the quantity $\text{Small}_\delta(A, \varepsilon)$ is dominated by M . \blacklozenge

Remark. For the properties above, to emphasize the dependence on the transformation S we may write $\text{Zero}(A, \varepsilon; S)$, etc.

The class of uniform sweeping-out transformations is evidently closed under powers and roots since

$$\text{Zero}(A, \varepsilon; S^n) \leq \text{Zero}(A, \varepsilon; S) \leq |n| \cdot \text{Zero}(A, \varepsilon; S^n)$$

for any non-zero integer n .

Cartesian Product. Fix $(S: X, \mu)$ and $(T: \widehat{X}, \widehat{\mu})$, two uniform sweeping-out transformations. Our goal is to show that $S \times T$ is uniform sweeping-out by showing it to satisfy (C0). Fix some set $\mathbf{V} \subset X \times \widehat{X}$ of positive mass. We shall compute an upper bound for

$$\text{Zero}(\mathbf{V}, 2\varepsilon; S \times T)$$

in terms of $\text{Small}(\mathbf{V}, \varepsilon; S)$ and $\text{Small}(\mathbf{V}, \varepsilon; T)$.

Given a point $z \in X$ let \mathbf{V}_z denote the cross-section of \mathbf{V} above z ; thus \mathbf{V}_z is the subset of \widehat{X} such that $\{z\} \times \mathbf{V}_z$ equals $[\{z\} \times \widehat{X}] \cap \mathbf{V}$. By standard measurability arguments, the following holds for μ -a.e. z . Set $\widehat{A} := \mathbf{V}_z$. Then for any positive $\widehat{\delta}$ the set

$$V := \{x \mid \widehat{\mu}(\mathbf{V}_x \triangle \widehat{A}) \leq \widehat{\delta}\} \tag{1}$$

has positive μ -mass. Consider z and \widehat{A} as henceforth fixed. Define the quantities

$$\widehat{M} := \text{Small}(\widehat{A}, \varepsilon; T) \quad \text{and} \quad \widehat{\delta} := \text{Size}(\widehat{A}, \varepsilon; T).$$

For this $\widehat{\delta}$, define V as in (1). Finally, set

$$M := \text{Small}(V, \varepsilon; S) \quad \text{and} \quad \delta := \text{Size}(V, \varepsilon; S).$$

Wishing to establish (C0) for $S \times T$, it suffices to show that

$$\text{Zero}(\mathbf{V}, 2\varepsilon; S \times T) \leq M + \widehat{M}/\delta.$$

Fix any set $\mathbf{W} \subset X \times \widehat{X}$ with mass at least 2ε . Set

$$W := \{x \mid \widehat{\mu}(\mathbf{W}_x) \geq \varepsilon\}$$

and note that $\mu(W) \geq \varepsilon$ follows by a Fubini argument. Define a function $f: \mathbb{Z} \rightarrow [0, 1]$ by

$$f(k) := \mu\{x \in W \mid \widehat{\mu}(T^k \widehat{A} \cap \mathbf{W}_x) \leq \widehat{\delta}\}.$$

This function measures the probability that a fiber \mathbf{W}_x has k in its bad set $\text{Indices}_{\widehat{\delta}}(\widehat{A}, \mathbf{W}_x)$. Let $\mathbf{1}[\cdot]$ denote the Dirac function where $\mathbf{1}[\text{true}] = 1$ and $\mathbf{1}[\text{false}] = 0$. By Fubini, the sum $\sum_{k \in \mathbb{Z}} f(k)$ equals

$$\begin{aligned} \sum_k \int_W \mathbf{1}[\widehat{\mu}(T^k \widehat{A} \cap \mathbf{W}_x) \leq \widehat{\delta}] d\mu(x) &= \int_W \sum_k \mathbf{1}[\widehat{\mu}(T^k \widehat{A} \cap \mathbf{W}_x) \leq \widehat{\delta}] d\mu(x) \\ &\leq \int_W \#\text{Indices}_{\widehat{\delta}}(\widehat{A}, \mathbf{W}_x) d\mu(x) \leq \mu(W) \cdot \widehat{M}. \end{aligned}$$

This yields the inequality

$$\sum_{k \in \mathbb{Z}} f(k) \leq \widehat{M}$$

whose usefulness arises from the fact that although $f(\cdot)$ depends on the set \mathbf{W} , the bound \widehat{M} does not.

Counting the set of bad k . Suppose k is such that $[S \times T]^k \mathbf{V} \cap \mathbf{W}$ has zero mass. For μ -a.e. x then $\widehat{\mu}(T^k(\mathbf{V}_{S^{-k}x}) \cap \mathbf{W}_x)$ equals zero. Thus if $x \in S^k V$ then

$$\widehat{\mu}(T^k \widehat{A} \cap \mathbf{W}_x) \leq \widehat{\delta} \tag{2}$$

by (1). In particular, (2) holds for every $x \in S^k V \cap W$. Thus $f(k) \geq \mu(S^k V \cap W)$. This last quantity will exceed δ if k is chosen outside of $\mathbb{K} := \text{Indices}_{\delta}(V, W; S)$. As a consequence

$$\#\text{(Indices}_0(\mathbf{V}, \mathbf{W}; S \times T) \sim \mathbb{K}) \leq \sum_{k \in \mathbb{Z}} \frac{f(k)}{\delta}.$$

Since the righthand quantity is dominated by \widehat{M}/δ we may conclude that

$$\#\text{Indices}_0(\mathbf{V}, \mathbf{W}; S \times T) \leq \#\mathbb{K} + \widehat{M}/\delta \leq M + \widehat{M}/\delta$$

as desired. ♦

Countable Cartesian Products

In order to pass from finite to countable cartesian products we need to show that the class “Uniform Sweeping-out” is closed under inverse limits.

Given $(T: X, \mu)$ and a factor algebra \mathcal{F} recall that the *conditional probability* function $\mathcal{P}[\cdot | \mathcal{F}]$ is canonically defined by the equality

$$\int_F \mathcal{P}[B | \mathcal{F}](x) d\mu(x) = \mu(B \cap F)$$

for all $F \in \mathcal{F}$ and measurable B .

INVERSE LIMIT LEMMA. *Given $(T: X, \mu)$ and an increasing tower $\mathcal{F}_1 \subset \mathcal{F}_2 \subset \dots$ of factor algebras whose join is the entire σ -algebra. Then*

$$T|_{\mathcal{F}_n} \text{ uniform sweeping-out for all } n \implies T \text{ uniform sweeping-out.}$$

PROOF. Fix ε and a set A of positive mass. Pick $\mathcal{F} \in \{\mathcal{F}_n\}_n$ sufficiently far out in the sequence that A is nearly \mathcal{F} -measurable: Choose it so that $\mu(F)$ is positive, where

$$F := \{x \mid \mathcal{P}[A | \mathcal{F}](x) > 1 - \varepsilon\}.$$

Let N be the constant arising from the uniform sweeping-out of $T|_{\mathcal{F}}$; thus for any collection $\#\mathbb{K} \geq N$ of integers, $\mu(\mathbf{F}) > 1 - \varepsilon$ where \mathbf{F} denotes the union $\bigcup_{k \in \mathbb{K}} T^k F$. Let $\mathbf{A} := \bigcup_{k \in \mathbb{K}} T^k A$. Consider a point $x \in \mathbf{F}$, say, $x \in T^k F$. Then

$$\mathcal{P}[\mathbf{A} | \mathcal{F}](x) \geq \mathcal{P}[T^k A | \mathcal{F}](x) = \mathcal{P}[A | \mathcal{F}](T^{-k} x) > 1 - \varepsilon$$

where the last inequality follows from the definition of F . Consequently

$$\begin{aligned} \mu\left(\bigcup_{k \in \mathbb{K}} T^k A\right) &= \int \mathcal{P}[\mathbf{A} | \mathcal{F}] d\mu \geq \int_{\mathbf{F}} \mathcal{P}[\mathbf{A} | \mathcal{F}] d\mu \\ &\geq \int_{\mathbf{F}} 1 - \varepsilon d\mu \\ &= \mu(\mathbf{F}) \cdot (1 - \varepsilon) > (1 - \varepsilon)^2 > 1 - 2\varepsilon. \end{aligned}$$

Thus any N iterates of A sweep out all but 2ε of the space. ♦

REFERENCES

- [A] T.M. Adams, *Uniformly sweeping out does not imply mixing*, Submitted..
- [F] N.A. Friedman, *Mixing on Sequences*, Can. J. Math. **35** (1983), 339–352.
- [F,K] N.A. Friedman, J.L. King, *Rank one lightly mixing*, Israel J. Math. **73** #3 (1991), 281–288.
- [K] J.L. King, *Lightly mixing is closed under countable products*, Israel J. Math. **62** #3 (1988), 341–346.