

Due **BoC, Monday, 23Sep2019**, wATMP!
Please *fill-in* every *blank* on this sheet. Write **DNE** if the object does not exist or the operation cannot be performed. NB: **DNE** $\neq \{\} \neq 0 \neq$ *Empty-word*.

U1: Show no work. Simply fill-in each blank on the problem-sheet.

a Given sets with cardinalities $|B| = 8$ and $|E| = 5$, the number of non-constant fncs in B^E is _____.

b Using *only* symbols **H, D, \wedge , \vee , \neg , T, F,], [**, rewrite (in simplest form) expression $[[H \Rightarrow D] \Rightarrow H]$ as _____ . Ditto, rewrite $[H \Rightarrow [D \Rightarrow H]]$ as _____ .

c $\forall x, z \in \mathbb{Z}$ with $x < z$, $\exists y \in \mathbb{Z}$ st.: $x < y < z$. T F
 $\forall x, z \in \mathbb{Q}$ with $x \neq z$, $\exists y \in \mathbb{R}$ st.: $x < y < z$. T F
For all sets Ω , there exists a fnc $f: \mathbb{R} \rightarrow \Omega$. T F

d The coeff of $x^7 y^{12}$ in $[5x + y^3 + 1]^{30}$ is _____.

[You may write in form number times multinomial-coeff. You can leave the multinomial-coeff as such, or write ITOf factorials.]

e The number of ways of picking 42 objects from 70 types is $\binom{70}{42}$ $\frac{\text{Binom}}{\text{coeff}} \left(\dots \right)$. And $\llbracket \frac{70}{42} \rrbracket = \llbracket \frac{T}{N} \rrbracket$, where $T = \dots \neq 70$, and $N = \dots$.

For the two essay questions, carefully TYPE, double spaced, grammatical solns. I suggest LATEX, but other systems are ok too.

U2: Give a careful bijective proof of:

Thm: Fix a natnum $N \geq 3$. Then

$$* \quad \llbracket N \downarrow 3 \rrbracket \cdot 2^{N-3} = \sum_{k=3}^N \llbracket k \downarrow 3 \rrbracket \cdot \binom{N}{k}.$$

[Can you also prove this by induction on N ?]

U3: **i** An **Lmino** (pron. “ell-mino”) comprises three squares in an “L” shape (all four orientations are allowed).

Let \mathbf{S}_n be the $2^n \times 2^n$ square board, comprising 4^n **squares** (little squares). Have $\widetilde{\mathbf{S}}_n$ be the board with one corner square removed. We showed in class that that each $\widetilde{\mathbf{S}}_n$ is Lmino-tilable (by $[4^n - 1]/3$ Lminos, of course). Further, with \mathbf{S}'_n denoting \mathbf{S}_n with an *arbitrary* puncture, we proved that every \mathbf{S}'_n is Lmino-tilable.

Generalize this to three-dimensions. Let \mathbf{C}_n denote the $2^n \times 2^n \times 2^n$ cube, $\widetilde{\mathbf{C}}_n$ the corner-punctured cube, and let \mathbf{C}'_n be \mathbf{C}_n but with an arbitrary **cubie** removed.

What is the 3-dimensional analog of an Lmino? Calling it a “3-mino”, how many cubies does it have? [Provide a drawing of your 3-mino.] PROVE: **Every \mathbf{C}'_n admits a 3-mino-tiling.** [Provide also pictures showing your ideas.]

ii Generalize to K -dim(ensional) space, with $\mathbf{C}_{n,K}$ being the $2^n \times \dots \times 2^n$ cube, having $[2^n]^K = 2^{nK}$ many K -dim’al cubies. As before, let $\mathbf{C}'_{n,K}$ be $\mathbf{C}_{n,K}$ with an arbitrary cubie removed.

What is your **K -mino** with which you will tile, and how many cubies does it have? (So a 2-mino is our Lmino.) PROVE: **Every $\mathbf{C}'_{n,K}$ admits a K -mino-tiling.**

U4: Pick/create a non-trivial PHP problem, then give a nice soln. Extra credit if there is a clever visual soln.

End of Home-U

U1: _____ 135pts

U2: _____ 65pts

U3: _____ 105pts

U4: _____ 25pts

Total: _____ 330pts

HONOR CODE: “I have neither requested nor received help on this exam other than from my team-mates and my professor (or his colleague).” **Name/Signature/Ord**

Ord:

Ord:

Ord:
