

U5: Short answer. Show no work.

Write **DNE** if the object does not exist or the operation cannot be performed. NB: $\mathbf{DNE} \neq \{\} \neq 0 \neq \text{Empty-word}.$

 Prof. King believes that writing in complete, coherent sentences is crucial in communicating Mathematics, improves posture, and whitens teeth. Circle one:

True! Yes! wH'at S a?sEnTENcE

b For a finite list \mathcal{S} of posints, define

$$\mu_{\mathcal{S}}(N) := \left\{ k \in [1..N] \mid \exists d \in \mathcal{S} \text{ with } d \bullet k \right\}.$$

For $\mathcal{S} := \{6, 7, 10\}$, the Inclusion-Exclusion formula (using the floor func) for the number of elements, $|\mu_{\mathcal{S}}(N)|$, is

OYOP: *In grammatical English sentences, write your essay on every 2nd line (usually), so that I can easily write between the lines.*

U6: An *Lmino* (pron. “ell-mino”) comprises three \blacksquare squares in an “L” shape (all four orientations are allowed). For natnum N , let \mathbf{R}_N denote the $3 \times N$ board: I.e., is the \mathbf{R}_5 board. Prove:

Theorem: When N is odd, then board \mathbf{R}_N is not Lmino-tilable.

You will likely want to first *state* and *prove* a Lemma.
Now use appropriate induction on N to prove the thm.
Also: *Illustrate your proof* with (probably several)
large, *labeled* pictures.

Also, for $N=2H$ even, our \mathbf{R}_N has exactly many Lmino-tilings (with proof).

U7: Consider a list $(n_1, n_2, n_3, \dots, n_9)$ of integers. Use PHP [Pigeon-hole Principle] to prove there exists a *non-void* set $\Omega \subset [1..9]$ of indices, st.

$$\left[\sum_{j \in \Omega} n_j \right] \bullet 9.$$

Use \equiv for \equiv_9 i.e, congruence mod-9.

[You may write answers as a product numbers, powers and multinomial-coeffs.]

d The physics lab has atomic *zinc, tin, silver and gold*. I'm allowed to take 6 atoms, so I have [expressed as single integer] many possibilities.

End of Class-U

U5: _____ 90pts
U6: _____ 50pts
U7: _____ 35pts

Total: 175pts

 The *Chase-numbers* comprise $\mathcal{C} := 1 + 3\mathbb{N}$.
 \mathcal{C} -number $385 \stackrel{\text{note}}{=} 35 \cdot 11$ is \mathcal{C} -irreducible: T F

Chase $N := 85$ is not \mathcal{C} -prime because \mathcal{C} -numbers

$J :=$ and $K :=$ satisfy

$$\left[\dots \right] = \left[\dots \right] \quad \left[\dots \right] = \left[\dots \right] \quad \left[\dots \right] = \left[\dots \right]$$

Al. **2** GCD(155, 59)

Also, E-GCD(175, 70) =