

OYOP: Write each essay on new sheets of paper, writing every **third** line, so that I can easily write between the lines. In grammatical English **sentences**, prove the following:

U1: Define a sequence $\vec{b} = (b_0, b_1, b_2, \dots)$ by $b_0 := 0$ and $b_1 := 3$ and

†: $b_{n+2} := 7b_{n+1} - 10b_n$, for $n = 0, 1, \dots$

Use induction to prove, for all $k \in [0.. \infty)$, that

‡: $b_k = 5^k - 2^k$.

Further. Given recurrence (†) and initial conditions, explain how you could have discovered/computed the numbers 5 and 2 in the (‡) formula.

Can you generalize to getting a (‡)-like formula when the recurrence is $b_{n+2} := \mathbf{S}b_{n+1} - \mathbf{P}b_n$, for arbitrary real-number coefficients \mathbf{S} and \mathbf{P} ?

U2: For a posint K , let \equiv mean \equiv_K . DEFN: Expression “ $x \equiv y$ ” means....

Please prove: THM: For all $b, \beta, g, \gamma \in \mathbb{Z}$, if $b \equiv \beta$ and $g \equiv \gamma$ then $[b \cdot g] \equiv [\beta \cdot \gamma]$.

U3: Short answer. Show no work.

Please write DNE in a blank if the described object does not exist or if the indicated operation cannot be performed.

a Mod $K := 229$, the recipr. $\langle \frac{1}{45} \rangle_K = \underline{\dots \dots \dots} \in [0..K]$.

[Hint: ‡] So $x = \underline{\dots \dots \dots} \in [0..K)$ solves $4 - 45x \equiv_K 7$.

b Posints $K = \underline{\dots \dots \dots}$, $N = \underline{\dots \dots \dots}$, $\alpha = \underline{\dots \dots \dots}$, $\beta = \underline{\dots \dots \dots}$, are st. $\alpha \equiv_K \beta$, yet $N^\alpha = \underline{\dots \dots \dots}$ is not \equiv_K to $N^\beta = \underline{\dots \dots \dots}$.

c Stmt $C \Rightarrow B$ has *contrapositive* $\underline{\dots \dots \dots}$ and *converse* $\underline{\dots \dots \dots}$. Recall $\&$, \vee , \neg mean AND, OR, NOT.

Using only symbols $\wedge, \vee, \neg, B, C,], [$, write $C \Rightarrow B$ as $\underline{\dots \dots \dots}$.

d Define $G: [1..12] \rightarrow \mathbb{N}$ where $G(n)$ is the number of letters in the n^{th} Gregorian month. So $G(2) = 8$, since the 2nd month is “February”. The only fixed-point of G is $\underline{\dots \dots \dots}$. The set of posints k where $G^{\circ k}(12) = G^{\circ k}(7)$ is $\underline{\dots \dots \dots}$.

e $\forall x, z \in \mathbb{Z}$ with $x < z$, $\exists y \in \mathbb{Z}$ st.: $x < y < z$. T F
 $\forall x, z \in \mathbb{Q}$ with $x \neq z$, $\exists y \in \mathbb{R}$ st.: $x < y < z$. T F
 For all sets Ω , there exists a fnc $f: \mathbb{R} \rightarrow \Omega$. T F

End of Class-U

U1: $\underline{\dots \dots \dots}$ 60pts
U2: $\underline{\dots \dots \dots}$ 30pts
U3: $\underline{\dots \dots \dots}$ 150pts

Total: $\underline{\dots \dots \dots}$ 240pts

An extra question, for your posting pleasure:

f Write the free vars in each of these expressions.

$$\exists n \in \mathbb{N}: f(n) \subset \bigcup_{\ell=r-4}^{r+7} \underbrace{\{x \in \mathbb{Z} \mid \ell \cdot n \equiv_5 x^2\}}_{E2} \underbrace{\qquad\qquad\qquad}_{E1}$$

E1: $\underline{\dots \dots \dots}$ **E2:** $\underline{\dots \dots \dots}$ **E3:** $\underline{\dots \dots \dots}$