

d DE $h'' - 6h' + 13h = 0$, has fundamental-set of solutions $\{e^{\alpha t}, e^{\beta t}\}$, for [possibly complex] numbers

$$\alpha = \dots \text{ and } \beta = \dots$$

Alternatively, we can write our fundamental-set as

$$e^{Jt} \cdot \cos(Kt) \text{ and } e^{Jt} \cdot \sin(Kt),$$

for real numbers $J = \dots$ and $K = \dots$

10 15 e

U.F. $y = y(t)$ satisfies

$$\dagger: y' + 3y^5 + t^2y = 0.$$

Using a Bernoulli substitution of $z(t) := [y(t)]^K$, this becomes FOLDE $z' + [C(t) \cdot z] = G(t)$, where $K = \dots$ and $G(t) = \dots$

7 f

*"I have neither requested nor received help on this exam other than from my professor."*10 20 10 b Bacteria with birth-multiplier \mathbf{B} are in a petri dish with carrying capacity \mathbf{C} . The population, $p(t)$, satisfies the Logistic DE [write $p(t)$ rather than p , etc.] which is

$$\dots$$

For *Hysteria* bacteria, $\mathbf{B} = \frac{1/5}{\text{min}}$. This petri dish has $\mathbf{C} = 16\text{oz}$, with initial population $\mathbf{p}_0 = 2\text{oz}$. The time when *Hysteria* has reached half the carrying capacity is $\tau \text{ min}$, where $\tau = \dots$. [You may use `exp()` and `log()` to express your answer.]Rounding τ up or down (your choice) to integer N , this $N = \dots$.15 15 c DE $[(2x + 8)y \cdot \frac{dy}{dx}] + 4y^2 = 0$ is not, alas, exact. Happily, multiplying both sides by (non-constant) fnc $V(y) = \dots$
gives a new DE which is exact.Solving the exact-DE, every (non-zero) soln $y = y(x)$ satisfies $F(x, y(x)) = \alpha$, for some constant α , where $F(x, y) = \dots$ U1: 150ptsTotal: 150pts