

Differential Eqns U-Class Prof. JLF King
 MAP2302 Wedn., 03Apr2019

Hi. Write **DNE** if the object does not exist or the operation cannot be performed. NB: $\text{DNE} \neq \{\} \neq 0 \neq \text{Empty-word}$. Use “ $f(x)$ notation” when writing fncs; in particular, for trig and log fncs. E.g, write “ $\sin(x)$ ” rather than the horrible $\sin x$ or $[\sin x]$.

U1: Show no work.

[a] The visual representation of \mathbb{C} is sometimes called “the ? plane”, where ? is Circle: Unreal Higher Snakes-on-a Argand Krypton Radon Xenon Euler Gauss Please- x y -com Air Sea De Rain-in-Spain-stays-mainly-on-the .

b A multivariate polynomial, where each monomial has the same degree, is **Circle**: **level** **uniform** **monogamous** **delicious** **flat** **polyandrous** **manic** **unitary** **Unitarian** **utilitarian** **monic** **smooth** **penultimate** **homogeneous**

— — C Inverse of $C := \begin{bmatrix} 1 & 1 \\ 2 & 1 \end{bmatrix}$, is $C^{-1} = \boxed{\dots}$.

Conjugating $W := \begin{bmatrix} 9 & -5 \\ 10 & -6 \end{bmatrix}$ by C
gives diagonal matrix $D := C^{-1}WC = \boxed{\dots}$.

Thus the $(2, 1)$ -entry of e^{tW} is $\boxed{\dots}$.

— — — **d** Consider linear DiffOp

$$V(y) := ty'' - [1+t]y' + y.$$

Verify [for yourself] that $V(Y_0) = 0$ and $V(Y_1) = 0$, where $Y_0 := e^t$ and $Y_1 := 1+t$. Their Wronskian is $W(Y_0, Y_1) = \dots$. Then VoP tells us that $y_{\alpha, \beta} :=$

is the general soln to $V(y_{\alpha, \beta}) = 3t^2$

Interestingly, WlfAlpha does not detect the full simplification. Here, humans go one step better...

U2: Show no work.

e \mathbb{R} -matrices V, H, A, B are 3×3 , with V invertible and A, B each nilpotent. [Use I for the 3×3 id-matrix.]

Matrix $e^{[H+I]H}$ equals $e^H \cdot e^{H^2}$: AT AF Nei

Matrix $e^{[H^2]}$ equals $[e^H]^2$: AT AF Nei

A^2 is the zero-matrix: AT AF Nei

Each entry of e^{tA} is a polynomial: AT AF Nei

Matrix e^A is nilpotent: AT AF Nei

Matrix BA is nilpotent: AT AF Nei

Matrix VAV^{-1} is nilpotent: AT AF Nei

 U.F. $x = x(t)$ satisfies $2x^{(3)} + 5x^{(2)} - x = 0$.

Then $\mathbf{Y} := \begin{bmatrix} x \\ x' \\ x'' \end{bmatrix}$ satisfies $\mathbf{Y}' = \mathbf{M} \cdot \mathbf{Y}$, where \mathbf{M} is this 3×3 matrix of numbers:

$$\mathbf{M} = \begin{bmatrix} & & \\ & & \\ & & \end{bmatrix}.$$

g

Fncts $x(t)$ and $y(t)$ satisfy this system of DEs,

$$\begin{aligned} x' + x - 3y &= 0, \\ y' + 6x - 8y &= 0. \end{aligned}$$

It can be written as $\mathbf{Y}' = \mathbf{M} \cdot \mathbf{Y}$,

where $\mathbf{Y} := \begin{bmatrix} x \\ y \end{bmatrix}$ and \mathbf{M} is matrix

.....

Characteristic poly of \mathbf{M} is $\varphi_{\mathbf{M}}(z) =$

.....

A soln has $x(t)$ a linear combination of $e^{\alpha t}$ and $e^{\beta t}$
for numbers $\alpha =$ and $\beta =$

End of U-Class

U1: ____ 130pts

U2: ____ 150pts

Total: ____ 280pts