

U1: *Show no work.*

a A multivariate polynomial, where each monomial has the same degree, is circle

monogamous	atrocious	gregarious
monic	expialadocious	homogeneous
manic	unitary	Unitarian
		utilitarian

b With $G(x) := \sin(\sin(x))$, a soln to $y'' - y = G$
is $y := f \circledast G$,
where $f(x) =$

cFncs $x(t)$ and $y(t)$ satisfy this system of DEs,

$$\begin{aligned} x' + x - 3y &= 0, \\ y' + 6x - 8y &= 0. \end{aligned}$$

It can be written as $\mathbf{Y}' = \mathbf{M} \cdot \mathbf{Y}$,
where $\mathbf{Y} := \begin{bmatrix} x \\ y \end{bmatrix}$ and \mathbf{M} is matrix Characteristic poly of \mathbf{M} is $\varphi_{\mathbf{M}}(z) =$ A soln has $x(t)$ a linear combination of $e^{\alpha t}$ and $e^{\beta t}$ for
numbers $\alpha =$ and $\beta =$

d Op $L(y) := 3t^2y'' + 5ty' - y$ is equidim'nal. The

gen.soln to $L(y)=0$ is $y(t) = \alpha \cdot \underline{\dots} + \beta \cdot \underline{\dots}$.

e Inverse of $C := \begin{bmatrix} 1 & 1 \\ 2 & 1 \end{bmatrix}$, is $C^{-1} = \boxed{\dots}$.

Conjugating $W := \begin{bmatrix} 9 & -5 \\ 10 & -6 \end{bmatrix}$ by C
gives diagonal matrix $D := C^{-1}WC = \boxed{\dots}$.

Thus the $(2, 1)$ -entry of e^{tW} is $\boxed{\dots}$.

 \mathbb{R} -matrices U, G, R are 3×3 , with U invertible and R nilpotent. [Use I for the 3×3 identity matrix.]

Matrix URU^{-1} is nilpotent: $AT \quad AF \quad Nei$

Each entry of e^{tR} is a polynomial: $AT \quad AF \quad Nei$

Matrix e^R is nilpotent: $AT \quad AF \quad Nei$

R^2 is the zero-matrix: $AT \quad AF \quad Nei$

Matrix $e^{[G+I]G}$ equals $e^G \cdot e^{G^2}$: $AT \quad AF \quad Nei$

Matrix $e^{[G^2]}$ equals $[e^G]^2$: $AT \quad AF \quad Nei$

U2: Show no work.

Suppose $y(0) = -2$, $y'(0) = 5$, $y''(0) = 2$. Then $\mathcal{L}(y^{(3)} + y^{(2)} + 3y)(s)$ equals $[[B(s) \cdot \hat{y}(s)] + C(s)]$ for **polynomials**

$B(s) =$ 145pts

and $C(s) =$ 20pts

U1: 145pts

U2: 20pts

Total: 165pts