

Welcome. Write expressions unambiguously e.g., “ $1/a + b$ ” should be bracketed either $[1/a] + b$ or $1/[a + b]$. (Be careful with negative signs!)

U1: Show no work.

a A multivariate polynomial, where each monomial has the same degree, is circle

monogamous	atrocious	gregarious
monic	expialadocious	homogeneous
manic	unitary	Unitarian
		utilitarian

b Suppose $y(0) = 2$, $y'(0) = 3$, $y''(0) = 5$. Then $\mathcal{L}(y^{(3)} + 2y')(s)$ equals $[(p(s) \cdot \hat{y}(s)) + q(s)]$ for **polynomials**

$p(s) =$

and $q(s) =$

c Let $h()$ be this square-wave: $h(t) := 5$ if (floor) $\lfloor t \rfloor$ is a multiple of 3, and

$h(t) := 0$ otherwise. Then $\hat{h}(s) =$

d Op $\mathcal{L}(y) := 3t^2y'' + 7ty' - 4y$ is equidim'nal. The

gen.soln to $\mathcal{L}(y)=0$ is $y(t) = \alpha \cdot$ $+ \beta \cdot$

e Gamma fnc: $\Gamma(5) =$ and $\Gamma(\frac{5}{2}) =$

For all real $x > 1$, our $\Gamma()$ function satisfies recurrence relation

$\Gamma(x) =$

f Matrices A, B, U are 2×2 , with U invertible. Then $e^{A+B} = e^A \cdot e^B$: AT AF Nei

$Ue^B U^{-1} = e^{UBU^{-1}}$: AT AF Nei

If e^B invertible, then B is invertible: AT AF Nei

U2: Show no work.

i Inverse of $C := \begin{bmatrix} 1 & 1 \\ 2 & 1 \end{bmatrix}$, is $C^{-1} =$

Conjugating $W := \begin{bmatrix} 9 & -5 \\ 10 & -6 \end{bmatrix}$ by C gives diagonal matrix $D := C^{-1}WC =$

Thus the $(2, 1)$ -entry of e^{tW} is

ii Fncts $x(t)$ and $y(t)$ satisfy this system of DEs,

$$\begin{aligned} x' + x - 3y &= 0, \\ y' + 6x - 8y &= 0. \end{aligned}$$

It can be written as $\mathbf{Y}' = \mathbf{M} \cdot \mathbf{Y}$, where $\mathbf{Y} := \begin{bmatrix} x \\ y \end{bmatrix}$ and \mathbf{M} is matrix

Characteristic poly of \mathbf{M} is $\varphi_{\mathbf{M}}(z) =$

A soln has $x(t)$ a linear combination of $e^{\alpha t}$ and $e^{\beta t}$ for numbers $\alpha =$ and $\beta =$

End of U-Class

U1: 130pts

U2: 55pts

Total: 185pts