

Welcome. Use “ $f(x)$ notation” when writing fncs; in particular, for trig and log fncs. E.g, write “ $\sin(x)$ ” rather than the horrible $\sin x$ or $[\sin x]$.

U1: Show no work.

a A *minimum* requirement for an LOR (letter-of-recommendation) from Prof. K is two courses.

Yes True Darn tootin’!

b With $f(x) := e^{7x}$ and $g(x) := e^{5x}$, then $[f \otimes g](t) =$

c This Wronskian is $\mathcal{W}(e^{3t}, \cos(2t)) =$

d Suppose $y(0) = 2$, $y'(0) = 3$, $y''(0) = 5$. Then $\mathcal{L}(y^{(3)} + 2y')(s)$ equals $[(p(s) \cdot \hat{y}(s)) + q(s)]$ for **polynomials**

$p(s) =$

and $q(s) =$

e Let $h()$ be this square-wave: $h(t) := 5$ if (floor) $[t]$ is a multiple of 3, and

$h(t) := 0$ otherwise. Then $\hat{h}(s) =$

f $\mathcal{L}(t^{26}e^{3t})(s) =$

Determine the inverse-transform, please.

$\mathcal{L}^{-1}\left(\frac{3s+5}{s^2+2s+5}\right)(t) =$

g Op $\mathcal{L}(y) := 3t^2y'' + 7ty' - 4y$ is equidim’nal. The gen.soln to $\mathcal{L}(y)=0$ is $y(t) = \alpha \cdot$ + $\beta \cdot$

A *critically-damped* unforced spring has DE

*: $\mathbf{M}y'' + \mathbf{B}y' + \mathbf{K}y = 0 \frac{\text{kg}\cdot\text{m}}{\text{sec}^2}$, where $\mathbf{M} := 3\text{kg}$, and the Hooke’s constant is $\mathbf{K} := 75 \frac{\text{kg}}{\text{sec}^2}$.

The damping constant $\mathbf{B} =$

The *general soln* to critically-damped (*) is

$$y(t) = \left[\alpha \cdot \text{_____} + \beta \cdot \text{_____} \right] \text{m.}$$

Here, $\alpha, \beta \in \mathbb{C}$. (The 3 blanks will have units & numbers in various places. Maybe $\exp(?)$ is more convenient than $e^?$ notation.) The **specific** soln with $y(0\text{sec}) = 0\text{m}$ and $y'(0\text{sec}) = 2 \frac{\text{m}}{\text{sec}}$ has $\alpha =$, $\beta =$

End of U-Class

U1: 170pts

U2: 55pts

Total: 225pts

U2: Show no work.