

Staple!

Calc 3
MAC2313

Class-U

Prof. JLF King
Touch: 4Aug2016

Ord: _____

U1: Short answer. Show no work.

Please write DNE in a blank if the described object does not exist or if the indicated operation cannot be performed.

a Let $\mathbf{p} := (4, 1, 3)$, $\mathbf{q} := (1, 7, 0)$ and $\mathbf{w} := (1, 1, 0)$. A dir-vec for $\mathbb{L} := \text{Line}(\mathbf{p}, \mathbf{q})$ is $\mathbf{D} := \mathbf{p} - \mathbf{q} =$ _____.The point on \mathbb{L} closest to \mathbf{w} is $\mathbf{C} =$ _____.**b** Let θ denote the angle between the longest-diagonal of a cube, and an edge. Then $\cos(\theta) =$ _____.**c** Every 3×3 matrix \mathbf{M} has $\text{Det}(5\mathbf{M}) = \alpha \cdot \text{Det}(\mathbf{M})$, where α is circle _____.5⁹ 5³ 5² 5 3⁵ 9⁵ 3²⁵ None-of-these**d** Let $\mathbf{M}(x) := \begin{bmatrix} x+1 & 2x & 1 \\ -1 & 1 & 1 \\ 0 & x-1 & 0 \end{bmatrix}$. Then $\text{Det}(\mathbf{M}(x)) =$ _____ + _____ $x +$ _____ $x^2 +$ _____ x^3 .**U2:** Here, let *AT* mean “Always True”, *AF* mean “Always False” and *Nei* mean “Neither always true nor always false”. Below, $\mathbf{v}, \mathbf{w}, \mathbf{x}$ repr. *distinct, non-zero* vectors in \mathbb{R}^4 , a \mathbb{R} -VS. Please the correct response:**y1** If $\mathbf{x} \notin \text{Span}\{\mathbf{v}, \mathbf{w}\}$ then $\{\mathbf{v}, \mathbf{w}, \mathbf{x}\}$ is linearly independent. *AT AF Nei***y2** Collection $\{\mathbf{0}, \mathbf{x}\}$ is linearly-indep. *AT AF Nei***y3** $\text{Span}\{\mathbf{v}, \mathbf{w}, \mathbf{x}, \mathbf{v} + 2\mathbf{w} + 3\mathbf{x}\}$ is all of \mathbb{R}^4 . *AT AF Nei***y4** If none of $\mathbf{v}, \mathbf{w}, \mathbf{x}$ is a multiple of the other vectors, then $\{\mathbf{v}, \mathbf{w}, \mathbf{x}\}$ is linearly independent. *AT AF Nei***y5** For 2×2 matrices: $\text{Det}(\mathbf{B} + \mathbf{A}) = \text{Det}(\mathbf{B}) + \text{Det}(\mathbf{A})$. *AT AF Nei***U3:** Use $\langle \cdot, \cdot \rangle$ for an inner-product on \mathbb{R}^N . State the Cauchy-Schwarz Inequality Thm, carefully stating the IFF-condition for equality.L
L**U4:** Triangle Inequality Thm: For all $\mathbf{u}, \mathbf{w} \in \mathbf{V}$, we have that $\|\mathbf{u} + \mathbf{w}\| \leq \|\mathbf{u}\| + \|\mathbf{w}\|$. (Omitted: The IFF-condition for equality.)**Derive** the Triangle-Inequality Thm, using the C-S thm.

End of Class-U

U1: _____ 95pts**U2:** _____ 90pts**U3:** _____ 30pts**U4:** _____ 45pts**Total:** _____ 260pts**HONOR CODE:** *I have neither requested nor received help on this exam other than from my professor (or his colleague).*
Name/Signature/Ord

Ord: _____

L