

Show no work. *NOTE:* The **inverse-fnc** of g , often written as g^{-1} , is *different* from the **reciprocal fnc** $1/g$. E.g, suppose g is invertible with $g(-2) = 3$ and $g(3) = 8$: Then $g^{-1}(3) = -2$, yet $[1/g](3) \stackrel{\text{def}}{=} 1/g(3) = 1/8$.

Write **DNE** in a blank if the described object does not exist or if the indicated operation cannot be performed.

U1:

a On \mathbb{Z}_+ , write $x \$ y$ IFF $xy < 0$. So $\$$ is

Transitive: $T \ F$. **Symm.:** $T \ F$. **Reflex.:** $T \ F$.

On \mathbb{Z} , say that $x \nabla y$ IFF $x-y \leq 1$. Then ∇ is:

Trans.: $T \ F$. **Symm.:** $T \ F$. **Reflex.:** $T \ F$.
(Be *careful* on both parts!)

b Let \mathcal{P}_∞ denote the family of all *infinite* subsets of \mathbb{N} . Define relation \approx on \mathcal{P}_∞ by: $A \approx B$ IFF $A \cap B$ is infinite. Stmt "This \approx is an equivalence-relation" is: $T \ F$

c $[\sqrt{2}^{\sqrt{27}}]^{\sqrt{3}} = \dots$. $\log_8(4) = \dots$.

d Quadratic $15x^2 + 23x + 6 = [Ax - \alpha] \cdot [Bx - \beta]$, for numbers $A = \dots$, $\alpha = \dots$; $B = \dots$, $\beta = \dots$.

e Below, f and g are differentiable fncs with

$$f(2) = 3, \quad f(3) = 5, \quad f'(2) = 19, \quad f'(3) = 17,$$

$$g(2) = 11, \quad g(3) = 13, \quad g'(2) = \frac{1}{2}, \quad g'(3) = 7,$$

$$f(5) = 43, \quad g(5) = 23, \quad f'(5) = 41, \quad g'(5) = 29.$$

Define the composition $C := g \circ f$. Then

$$C(2) = \dots; \quad C'(2) = \dots.$$

Please write each answer as a product of numbers; **do not** multiply out. [Hint: The Chain rule.]

f Let $y = f(x) := [7 + \sqrt[3]{2x}]/5$. Its inverse-function is $f^{-1}(y) = \dots$.

g Compute the sum of this geometric series:

$$\sum_{k=1}^{\infty} [-1]^k \cdot [1/3]^{2k} = \dots$$

Please PRINT your Name

.....

Please PRINT your Student-ID number (just this once)

.....

HONOR CODE: "I have neither requested nor received help on this exam other than from my professor."

Signature:

.....

End of Prereq-U