

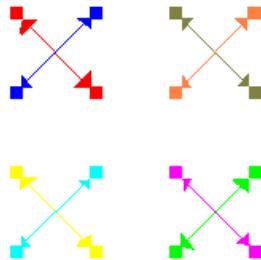
Soln to 4×4 TicTacToe team essay take-home problem

Prof. K

The question was:

Q: The 4×4 TTT (TicTacToe) board is $\mathbb{B} := [1..4] \times [1..4]$; sixteen **cells**. Let Γ denote the TTT-automorphism group; the set of self-bijections of \mathbb{B} which preserve all ten TTTs. So $R, F \in \Gamma$, where R rotates \mathbb{B} by 90° CCW, and F flips \mathbb{B} about its vertical axis. Evidently, $\langle R, F \rangle_\Gamma \cong \mathbb{D}_4$.

A less obvious TTT-automorphism is the **swizzle**, S : It exchanges each corner square with the central square that it (diagonally) touches; and it does The Right Thing on the edge squares.



i Easily, $S \leq R$ and $S \leq F$, hence each element of subgroup $\Lambda := \langle S, F, R \rangle$ can be written in form $S^b R^c F^d$ for integers b, c, d . So $|\Lambda| = \underline{\dots\dots\dots}$; prove this.

Draw a “16-dot picture” (4×4 dots, with arrows), for each element $\alpha \in \Lambda$. However, use the same picture for α rotated or flipped about any line, or for α^{-1} (rotated or flipped). *Label* each picture with *all* the automorphisms that it describes. The total number of labels should equal your $|\Lambda|$.

ii Find a TTT-aut T which is **not** in the Λ subgp. Write the commutation relations between T and each of $\{S, R, F\}$. Prove that each aut α can be written as $\alpha = T^{a_1} S^{a_2} R^{a_3} F^{a_4}$, with $a_i \in \mathbb{Z}$. For element $\beta = T^{b_1} S^{b_2} R^{b_3} F^{b_4}$, give an explicit multiplication rule showing how to compute the exponents $\{c_i\}_{i=1}^4$ of $\beta\alpha = T^{c_1} S^{c_2} R^{c_3} F^{c_4}$.

Prove that $\langle T, S, R, F \rangle$ is all of Γ . Thus $|\Gamma| = \underline{\dots\dots\dots}$.

Draw all the new labeled 16-dot pictures for $\Gamma \setminus \Lambda$.

iii Find a set of *involutions* which generates Γ . Compute (with proof) the center of Γ ; what is its order?

iv With $u \in \mathbb{B}$ the upper-LH corner of \mathbb{B} , define its stabilizer $\Upsilon := \text{Stab}_\Gamma(u)$. With proof, compute $|\Upsilon| = \underline{\dots\dots\dots}$. The number of Υ -orbits is $\underline{\dots\dots\dots}$.

Soln

We have commutation relation $\mathbf{FR} = \mathbf{R}^3\mathbf{F}$. Swizzle \mathbf{S} commutes with \mathbf{F} and \mathbf{R} , so the general elt in Λ has form $\mathbf{S}^b\mathbf{R}^c\mathbf{F}^d$, where $b,d \in \{0,1\}$ and $c \in \{0,1,2,3\}$. Thus $|\Lambda| = 2 \cdot 4 \cdot 2 = 16$.

The **weight** of a cell, $\text{Wei}(\mathbf{c})$, is the number of TTT s owning \mathbf{c} . In our 4×4 TTT , $\text{Wei}(\text{Corner}) = 3$, $\text{Wei}(\text{Edge}) = 2$, $\text{Wei}(\text{Center}) = 3$. So there might be an auto carrying corners to centers.

The **rank** of a TTT is the number of varying coordinates. On our 4×4 , the rank-1 TTT s are vertical and horizontal. The two diagonal- TTT s each have rank-2. Can an auto change rank?

Rank is preserved. The **weight-multiset** [multiset of its cell-weights] is $\{3, 3, 2, 2\}$ for a vert/horiz TTT , but is $\{4, 4, 4, 4\}$ for a diagonal TTT .

All autos. Fix a mystery auto β , acting on board

\mathbf{u}	p	q	v
P	c_1	c_2	?
Q	d_1	d_2	?
V	?	?	z

It must carry upper-LH-cell \mathbf{u} to some weight-3 cell; and we can use $\mathbf{S}, \mathbf{R}, \mathbf{F}$ to carry it back: *WLOG* β fixes \mathbf{u} . Hence β sends the $\mathbf{u} - \mathbf{v}$ TTT to either itself (possibly scrambling the cells), or sends it to $\mathbf{u} - V$. But \mathbb{D}_4 owns the flip on the $\mathbf{u} - z$ diagonal; *so WLOG* β sends $\mathbf{u} - \mathbf{v}$ to itself. Thus β sends $\mathbf{u} - V$ to itself.

As β preserves weight, necessarily β fixes v and V ; consequently, β fixes z .

Either β fixes p and q , or it exchanges them. If those edge-cells are fixed, then the frozen 4 corners force $\beta = \text{Id}$. Conversely, if p and q are exchanged, then the frozen u and z forces c_1 to be exchanged with d_2 . Continuing, β is seen to be...

... The **Traffic light**, named by one of my former students. Define \mathbf{T} to be it.

Composing automorphisms, we find:

Each of \mathbf{T}, \mathbf{S} commutes with each of \mathbf{R}, \mathbf{F} .
 \ast : Also, $\mathbf{ST} = \mathbf{TSR}^2$, and $\mathbf{FR} = \mathbf{R}^3\mathbf{F}$. Each of $\mathbf{T}, \mathbf{S}, \mathbf{F}$ has order 2, and \mathbf{R} has order 4.

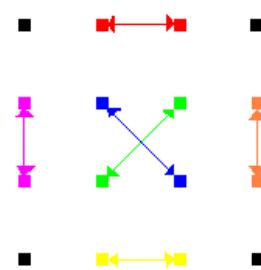
Hence every elt of subgroup $\langle \mathbf{T}, \mathbf{S}, \mathbf{F}, \mathbf{R} \rangle$ can be written as $\mathbf{T}^a \mathbf{S}^b \mathbf{R}^c \mathbf{F}^d$, where $a, b, d \in \{0, 1\}$ and $c \in \{0, 1, 2, 3\}$; The foregoing β -argument shows that subgroup $\langle \mathbf{T}, \mathbf{S}, \mathbf{F}, \mathbf{R} \rangle$ is *all* of Γ ; whence $|\Gamma| = 2 \cdot 2 \cdot 4 \cdot 2 = 32$.

Involutions. This set $\{\mathbf{T}, \mathbf{S}, \mathbf{RF}, \mathbf{F}\}$ of involutions generates Γ , since $\langle \mathbf{RF}, \mathbf{F} \rangle = \langle \mathbf{R}, \mathbf{F} \rangle$.

Center of Γ . Each Γ -elt can be written as sg , where $s \in \{\mathbf{\varepsilon}, \mathbf{T}, \mathbf{S}, \mathbf{TS}\}$, and $g \in \langle \mathbf{R}, \mathbf{F} \rangle$.

Suppose $sg \in \mathcal{Z}(\Gamma)$. Since g commutes with \mathbf{T} and \mathbf{S} , so must s . Our (\ast) now forces $s = \mathbf{\varepsilon}$.

Thus g must commute with both \mathbf{R} and \mathbf{F} . Hence $\mathcal{Z}(\Gamma) = \{\mathbf{\varepsilon}, \mathbf{R}^2\}$.



Pictures

Let's count auto-pictures, up to flipping or rotating the image, or reversing the arrows.

Pic is of	\mathbb{D}_4 conjugates	Inverses	Count
Id	None	Self-inverse	1
R^2	None	Self-inverse	1
R	$J_F(R) = R^3$	Each other	2
F	$J_R(F) = R^2 F$	Self-inverse	2
RF	$J_R(RF) = J_F(RF) = R^3 F$	Self-inverse	2

To get *all* elts, we can multiply this table on the left by each element $s \in \{S, T, TS\}$. Given elts $\mathbf{c}, \mathbf{d} \in \langle R, F \rangle$, note that conjugating by \mathbf{c} produces

$$J_{\mathbf{c}}(s\mathbf{d}) \stackrel{\text{note}}{=} s \cdot J_{\mathbf{c}}(\mathbf{d}), \quad \text{since } s \sqsubseteq \mathbf{c}.$$

So for the left two columns of the table, we can just multiply by s . As for inverses, note

$$[s\mathbf{d}]^{-1} = \mathbf{d}^{-1} s^{-1} \stackrel{\text{note}}{=} s^{-1} \mathbf{d}^{-1}.$$

When s is an involution, then, the latter is $s\mathbf{d}^{-1}$; we can just multiply the third column as well.

The upshot is that for $s = S$ and $s = T$, we can just multiply on the left. For $s = TS$, we'll need to pay attention to inverses, since TS is not an involution.

Multiplying by T. For free, we have

Pic is of	\mathbb{D}_4 conjugates	Inverses	Count
T	None	Self-inverse	1
TR^2	None	Self-inverse	1
TR	TR^3	Each other	2
TF	$TR^2 F$	Self-inverse	2
TRF	$TR^3 F$	Self-inverse	2

The next case is slightly different, as TS is not an involution.

Multiplying by TS . Note that $s := TS$ has order 4, since $s^4 = [R^2]^2 = \epsilon$. So for \mathbf{d} an element of \mathbb{D}_4 ,

$$[s\mathbf{d}]^{-1} = \mathbf{d}^{-1} s^{-1} \stackrel{\text{note}}{=} s^3 \mathbf{d}^{-1} \stackrel{\text{note}}{=} TSR^2 \mathbf{d}^{-1}.$$

In this case, the 2nd row gets combined with the 1st:

Pic is of	\mathbb{D}_4 conjugates	Inverses	Count
TS	None	$[TS]^{-1} = TSR^2$	2
TSR	TSR^3	Self-inverse	2
TSF	$TSR^2 F$	Each other	2
$TSRF$	$TSR^3 F$	Each other	2

Multiplying by S. We obtain

Pic is of	\mathbb{D}_4 conjugates	Inverses	Count
S	None	Self-inverse	1
SR^2	None	Self-inverse	1
SR	SR^3	Each other	2
SF	$SR^2 F$	Self-inverse	2
SRF	$SR^3 F$	Self-inverse	2

The ten pictures of this and the preceding table, show the 16 autos comprising group Λ .

Stabilizer subgroup. Here are few ways to see that $\Upsilon := \text{Stab}_\Gamma(\mathbf{u})$ has order 4.

Already Γ carries a corner to every corner/center; and edge-cells have the wrong weight. So the Γ -orbit of a corner/center has size 8, whence, courtesy of our Orb-Stab thm, the stabilizer Υ has cardinality $\frac{|\Gamma|}{8} = 4$.

Secondly, our *All autos* proof gave us two binary degrees of freedom, once cell \mathbf{u} was fixed. The two edge cells could either be fixed, or exchanged. And then, we could either flip the picture on the $\mathbf{u}-z$ diagonal or not. So we have $2 \cdot 2 = 4$ possibilities. Indeed, this shows that Υ is a copy of Klein-4.

We could just write down those 4 auts, or we can scan the pictures looking for where upper-left is fixed. Either way gives that

$$\Upsilon = \{\epsilon, T, RF, TRF\} = \langle T, RF \rangle.$$

THE ORBIT-STRUCTURE OF Υ :

Two fixed-points; Three 2-cycles; Two 4-cycles.

Hence there are $2 + 3 + 2 = 7$ many Υ -orbits.

[Consistency check: $[2 \cdot 1] + [3 \cdot 2] + [2 \cdot 4] = 16$.]

