Guaranteeing triangles in a graph
JL.F. King
University of Florida, Gainesville FL 32611-2082, USA
9 April, 2018 (at 08:44)

Entrance. Two proofs from Miklos Béna'’s text. Be-
low, graph means a finite simple graph.

When the relevant graph is evident from context,
let uw := Deg(u) be the degree of vertex u.

1: Lemma (Béna:11.7).  Suppose graph H=(V,E) has
2m vertices, where m > 2, and has at least [1 + m?|
edges. Then H admits a triangle. O

Rem. The result is “true” for m=1, since a 2-vertex
simple graph cannot have >[1+ m?] =2 edges. (For

m=0, it even more vacuously true.) L]

Proof.  For m=2, our H has subgraph Kj~{edge},
which has a triangle (indeed, two triangles).

Fix m>3 and an adjacent-pair u==v of vertices.
WLOG, u and v have no neighbor in common. Thus
. Delete u and v and their edges,
to produce subgraph H'=(V’,E’). This operation
deleted u+v — 1 edges, since u==v. Hence

’V/| = 2-[m—1] and
IE'| > [1+m? —[2m — 1]

note

1+ [m—1)>.

By induction on m, then, H admits a triangle. ¢

2: Proposition.  Let d denote the minimum vertex-
degree of graph R=(V,E) with N>1 vertices and
E = |E| edges. Have R’ be R but with a min-deg
vertex (and its edges) deleted. Then

¥: B > B[ 552,

with equality IFF R is vertex-regular (Vu: @ =d). ¢

Proof. Inequality (¥) follows from observing that

E-E d 2 _ 2 2
E

E 2E ° Nd N’
since 2FE = Y.u > Nd, with equality IFF vertex-

ucVv
regular. ¢
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3: Theorem (Béna:11.8). The H of Lemma 1 admits at
least m triangles. O

Rem. As in the previous Remark, this is vacuously
true at m=1 and m=0. (For m=0 it is even truer. Not
only is the hypothesis vacuous, but the conclusion holds.) L]

Pf. Since Ky~{edge} has two triangles, WLOG m>3.
Courtesy (1), we can fix the vertices u,v,w of a
triangle, A. The number of other vertices is [2m — 3],
so define x € Z by
z 4 [2m—3] = [

Number of connector edges, con—}
necting A to the “other” vertices

Notice that if z > 0, then these “other” vertices
give us at least & many triangles formed with some
two of u,v,w.

[CASE: m—1 < {E] Then the m—1 “other” trian-
gles, along with A\, give us the requisite m triangles.

[CASE: 1<x< m—l] Let R denote the induced-
subgraph of the other [2m — 3] vertices. The number
of connectors is

r+2m—3 <  m—-2] +2m-3] = 3m-5.
Hence the number of R-edges is at least
f: [1+m? - [3m—5] — 3 = m® - 3m+3.

Let R’ be R but with a min-deg vertex deleted; so
|Ver| = 2m — 4 = 2[m — 2]. If we could establish

! 2
*: |Ep| > [m—2]%,

then H would have at least 1 + x 4+ [m — 2] triangles,
i.e, at least m triangles (courtesy the induction).

By the Proposition, |Eg/| > [Eg| - 32:2 So ISTS

|Eg|-[2m — 5] 2 [2m — 3]-[m — 2)%.
Courtesy (f), then, assertion
t: [m?—3m+3]- [2m — 5] < 2m — 3]-[m — 2J?

suffices. “Easily”, LhS(f) — RhS(f) = m — 3. Conse-
quently, m > 4 implies (1).
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For m = 3, failure of (x), forces every preceding
inequality to be an equality. So graph R, which has
2m —3 = 6 —3 = 3 vertices, would have to have

exactly
by (1)

m’ —3m+3 9—-9+43 = 3

edges. Thus R is itself a triangle, and consequently in-
deed has m —2 = 3 —2 = 1 triangles, even though
R’ has only 2 vertices and hence no triangles.

Now R has at least

l4+m? - [z+[2m—3]+3] = m—-1]* -z

edges. If strict # < 0, then |[Eg| > 1+ [m—1]% So
adjoining, say, vertex u to R, gives a graph, R, with
2-[m—1] vertices and at least 1+ [m—1]? edges. Thus
R™ has at least m—1 triangles distinct from A.

UpsHOT: WLOGenerality =0, and the number of
t
connectors is 2m — 3 > 0. So some vertex of u,v,w

has a connector to R; say vertex w. Adjoining to R,
vertex w and its connectors, again gives a graph with
2-[m—1] vertices and at least 1+ [m—1]? edges. 4
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