

Guaranteeing triangles in a graph

J.L.F. King

University of Florida, Gainesville FL 32611-2082, USA

9 April, 2018 (at 08:44)

Entrance. Two proofs from Miklós Bóna's text. Below, *graph* means a finite simple graph.

When the relevant graph is evident from context, let $\hat{u} := \text{Deg}(u)$ be the degree of vertex u .

1: Lemma (Bóna:11.7). Suppose graph $H=(V, E)$ has $2m$ vertices, where $m \geq 2$, and has at least $[1 + m^2]$ edges. Then H admits a triangle. \diamond

Rem. The result is “true” for $m=1$, since a 2-vertex simple graph cannot have $\geq [1 + m^2] = 2$ edges. (For $m=0$, it even *more* vacuously true.) \square

Proof. For $m=2$, our H has subgraph $K_4 \setminus \{\text{edge}\}$, which has a triangle (indeed, two triangles).

Fix $m \geq 3$ and an adjacent-pair $u-v$ of vertices. WLOG, u and v have no neighbor in common. Thus $2m \geq \hat{u} + \hat{v}$. Delete u and v and their edges, to produce subgraph $H'=(V', E')$. This operation deleted $\hat{u} + \hat{v} - 1$ edges, since $u-v$. Hence

$$|V'| = 2 \cdot [m-1] \quad \text{and} \\ |E'| \geq [1 + m^2] - [2m - 1] \stackrel{\text{note}}{=} 1 + [m-1]^2.$$

By induction on m , then, H' admits a triangle. \diamond

2: Proposition. Let d denote the minimum vertex-degree of graph $R=(V, E)$ with $N \geq 1$ vertices and $E := |E|$ edges. Have R' be R but with a min-deg vertex (and its edges) deleted. Then

$$\text{Y:} \quad |E'| \geq |E| \cdot \frac{N-2}{N},$$

with equality IFF R is vertex-regular ($\forall u: \hat{u} = d$). \diamond

Proof. Inequality (Y) follows from observing that

$$\frac{E - E'}{E} = \frac{d}{E} = \frac{2d}{2E} \leq \frac{2d}{Nd} = \frac{2}{N},$$

since $2E = \sum_{u \in V} \hat{u} \geq Nd$, with equality IFF vertex-regular. \diamond

3: Theorem (Bóna:11.8). *The H of Lemma 1 admits at least \mathbf{m} triangles.* \diamond

Rem. As in the previous REMARK, this is vacuously true at $\mathbf{m}=1$ and $\mathbf{m}=0$. (For $\mathbf{m}=0$ it is even truer. Not only is the hypothesis vacuous, but the conclusion holds.) \square

Pf. Since $K_4 \setminus \{\text{edge}\}$ has two triangles, WLOG $\mathbf{m} \geq 3$.

Courtesy (1), we can fix the vertices $\mathbf{u}, \mathbf{v}, \mathbf{w}$ of a triangle, Δ . The number of other vertices is $[2\mathbf{m} - 3]$, so define $x \in \mathbb{Z}$ by

$$x + [2\mathbf{m} - 3] := \left[\begin{array}{l} \text{Number of } \mathbf{connector} \text{ edges, con-} \\ \text{necting } \Delta \text{ to the "other" vertices} \end{array} \right].$$

Notice that if $x \geq 0$, then these "other" vertices give us at least x many triangles formed with some two of $\mathbf{u}, \mathbf{v}, \mathbf{w}$.

CASE: $\mathbf{m}-1 \leq x$ Then the $\mathbf{m}-1$ "other" triangles, along with Δ , give us the requisite \mathbf{m} triangles.

CASE: $1 \leq x < \mathbf{m}-1$ Let R denote the induced-subgraph of the other $[2\mathbf{m} - 3]$ vertices. The number of connectors is

$$x + [2\mathbf{m} - 3] \leq [\mathbf{m} - 2] + [2\mathbf{m} - 3] = 3\mathbf{m} - 5.$$

Hence the number of R -edges is *at least*

$$\dagger: [1 + \mathbf{m}^2] - [3\mathbf{m} - 5] - 3 = \mathbf{m}^2 - 3\mathbf{m} + 3.$$

Let R' be R but with a min-deg vertex deleted; so $|\mathbb{V}_{R'}| = 2\mathbf{m} - 4 = 2[\mathbf{m} - 2]$. If we could establish

$$*: |\mathbb{E}_{R'}| \stackrel{?}{>} [\mathbf{m} - 2]^2,$$

then H would have at least $1 + x + [\mathbf{m} - 2]$ triangles, i.e., at least \mathbf{m} triangles (courtesy the induction).

By the Proposition, $|\mathbb{E}_{R'}| \geq |\mathbb{E}_R| \cdot \frac{2\mathbf{m}-5}{2\mathbf{m}-3}$. So ISTS

$$|\mathbb{E}_R| \cdot [2\mathbf{m} - 5] \stackrel{?}{>} [2\mathbf{m} - 3] \cdot [\mathbf{m} - 2]^2.$$

Courtesy (\dagger), then, assertion

$$\ddagger: [\mathbf{m}^2 - 3\mathbf{m} + 3] \cdot [2\mathbf{m} - 5] \stackrel{?}{>} [2\mathbf{m} - 3] \cdot [\mathbf{m} - 2]^2$$

suffices. "Easily", $\text{LhS}(\ddagger) - \text{RhS}(\ddagger) = \mathbf{m} - 3$. Consequently, $\mathbf{m} \geq 4$ implies (\ddagger).

For $\mathbf{m} = 3$, failure of (*), forces every preceding inequality to be an equality. So graph R , which has $2\mathbf{m} - 3 = 6 - 3 = 3$ vertices, would have to have exactly

$$\mathbf{m}^2 - 3\mathbf{m} + 3 \stackrel{\text{by } (\dagger)}{=} 9 - 9 + 3 = 3$$

edges. Thus R is itself a triangle, and consequently indeed has $\mathbf{m} - 2 = 3 - 2 = 1$ triangles, even though R' has only 2 vertices and hence no triangles.

CASE: $x \leq 0$ Now R has at least

$$[1 + \mathbf{m}^2] - [x + [2\mathbf{m} - 3] + 3] = [\mathbf{m} - 1]^2 - x$$

edges. If strict $x < 0$, then $|\mathbb{E}_R| \geq 1 + [\mathbf{m} - 1]^2$. So adjoining, say, vertex \mathbf{u} to R , gives a graph, R^+ , with $2 \cdot [\mathbf{m} - 1]$ vertices and at least $1 + [\mathbf{m} - 1]^2$ edges. Thus R^+ has at least $\mathbf{m} - 1$ triangles distinct from Δ .

UPSHOT: WLOGGenerality $x=0$, and the number of connectors is $2\mathbf{m} - 3 \stackrel{\text{note}}{>} 0$. So *some* vertex of $\mathbf{u}, \mathbf{v}, \mathbf{w}$ has a connector to R ; say vertex \mathbf{w} . Adjoining to R , vertex \mathbf{w} and its connectors, again gives a graph with $2 \cdot [\mathbf{m} - 1]$ vertices and at least $1 + [\mathbf{m} - 1]^2$ edges. \spadesuit

Filename: Problems/GraphTheory/triangles-in-a-graph.latex
As of: Friday 06Apr2018. Typeset: 9Apr2018 at 08:44.