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ABSTRACT. Andrés del Junco has proposed a definition of topological minimal self-joinings intended
to parallel Dan Rudolph’s measure-theoretic concept. By means of a rank-two “cutting and stacking”,
this article constructs the first example of a system (a subshift) satisfying his proposed definition of
2-fold topological minimal self-joinings.

The second part of the article shows that 2-fold topological minimal self-joinings does not imply
3-fold and that no map has 4-fold topological minimal self-joinings. This latter result follows from a
generalization of a theorem of Schwartzman.

§0  INTRODUCTION

In 1979 Dan Rudolph showed that Don Ornstein’s rank-1 mixing map, 7', could be built to possess
a measure-theoretic property which has come to be called minimal self-joinings of all orders.
For order 2 (our tacit assumption, if no adjective is present) this says that whenever two copies
of T sit simultaneously as factors of a third, ergodic, transformation then the two copies are
either independent or are identified by some power of T. Equivalently, letting (X, ) denote the
space on which 7" acts, any T' x T-invariant ergodic measure on X x X projecting to p on each
coordinate is either product measure p X p or else is supported on the graph of some T". One can
similarly define K-fold minimal self-joinings by considering the possible ergodic measures living
on XK the cartesian K-th power of X. If T has minimal self-joinings of all orders then any
automorphism of T is simply a cartesian product of powers of T composed with a permutation
of the coordinates. Rudolph constructed such a map in [R] and used the automorphism property
to fabricate a menagerie of counterexample transformations. Later investigations showed, [K] and
[K,T], that the maps with minimal self-joinings play the role of elementary building blocks for a
class of maps containing the finite-rank mixing maps.

What analogue does this notion have in the topological category of a homeomorphism 7T of
a compact metric space X7 Using minimal sets as the analogue of ergodic measures, Nelson
Markley proposed in [M] a definition paralleling Rudolph’s measure-theoretic definition. He and
Joe Auslander proved in [A,M] that this property for order 2 implies the property for all orders and
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2 JLF King

powers. They then went on to establish a structure theorem roughly analogous to the measure-
theoretic one of [K|. However, an exact analogue of Rudolph’s theory is not obtained because, for
such transformations, the automorphism group of T seems difficult to pin down.

In [J] Andrés del Junco took orbit closures as the natural analogue of ergodic measures, giving
rise to a different definition of topological minimal self-joinings (below) which is appealing to
measure-theorists because it permits an analogue of product measure. However, since no examples
fulfilling his definition were known, he worked with a complex alternative definition designed to be
fulfilled by the topological Chacon’s transformation and for it obtained an analogue of a large part
of the Rudolph theory.

This note constructs a map satisfying Andrés’ original “natural” definition, in the hope of resusci-
tating interest in it. The method by which the map is constructed seems also to be of independent
interest.

Section 2 strengthens an old theorem of Schwartzman to show that 4-fold topological minimal
self-joinings does not exist, thus answering negatively a question of [J]. By contrast, in the measure-
theoretic setting, all known maps with 2-fold minimal self-joinings have msj of all orders and indeed
“2-fold = N-fold” is a central open question related to the (in)famous problem of whether 2-fold
mixing implies N-fold mixing. What is known and will appear elsewhere, is that 4-fold minimal
self-joinings implies N-fold, in the measure-theoretic category.

I thank Joe Auslander and Nelson Markley for cheerfully suffering and critically examining early
versions of this argument. This work was supported by a NaTioNaL SCIENCE FOUNDATION POSTDOC-
TORAL RESEARCH FELLOWSHIP.

Nomenclature. We use [n..m) to indicate a half-open “interval of integers” ZN[n,m). A similar
convention holds for closed and open intervals of integers.

Having fixed a finite alphabet A, a name denotes a doubly infinite string of letters from A ie.,
is a point x € AZ. Use x[n] to denote the n-th letter in z and let z[n..m) denote the substring

zn)zn+ 1) zn+2] ... x[m—1]

with the obvious meaning if m = co. A word means a finite string of letters from A. Words are
always indexed from zero ie., if word W is of length A then W = W0..h). The general purpose
term “string” may denote a finite, half-infinite, or bi-infinite string of letters.

Let #X denote the cardinality of the set X. Agree to use := to mean “is defined to be”; in
a = b the expression b defines the symbol a.

Topological notions. This paper concerns a homeomorphism 7: X — X of a compact metric
space with |-, -| denoting the metric. Use Or(z) or just O(x) to represent the orbit {T"x},cz of
and let O(x) denote its orbit closure. An z € X is a transitive point if O(z) = X. Distinct
points z and y are proximal if

inf ‘T”x, T”y‘ =0;

nez

equivalently, there exist a point z and times n(i) such that Tz — z and T"Wy — 2. Points
and y are future (past) asymptotic if |T"x, T™y| goes to zero as n — +00 (n — —00).
Map T is topologically transitive if every invariant non-empty open set is dense; in the case
of a metric space, this is equivalent to X possessing a transitive point. The map is topologically
Ergodic Theory and Dynamical Systems, vol. 10, (1990), 745-761.
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weak-mixing if T x T is topologically transitive. If every point of T is transitive then 7' is said to
be minimal. Finally, a minimal map 7" is proximal orbit dense if for every pair of points z,y
in distinct orbits there exists n # 0 such that x and T™y are proximal. This property is properly
weaker than the following.

DEFINITION. A map T: X — X has topological minimal self-joinings in the sense of del Junco
if two conditions hold.

(i) Every (non-zero) power of T is minimal.

(ii) For any pair of points z,y € X not in the same orbit, the pair (x,y) is a transitive point
for T'xT.

Condition (ii) says that any pair which could be transitive under T' x T' is transitive: Evidently
if z and y are in the same orbit, y = T3z for instance, then the T' x T orbit closure of (z,y) is the
third off-diagonal

Dy ={(2,T%2) | = € X}
and thus certainly cannot be all of X x X. ¢

Condition (ii) of topological minimal self-joinings is equivalent to the seemingly weaker condition
that whenever points x and y are in different orbits, then they are proximal. For this along with
the minimality of T" yields

@TXT(.’E, y) D Dyg.

whenever x and y are points in different orbits. But for any k the points x and T~Fy are in different
orbits and so the orbit closure of (z,T~*y) contains Dy; equivalently, OTxT(a:,y) contains Dy.
Thus

Orxr(z,y) D Closure{(z, T"z) |ze X & keZ} ot X x X.
This last equality follows by the minimality of T ¢

The point(s) of difficulty. The topological Chacén’s map is proximal orbit dense but does not
have topological minimal self-joinings. The difficulty comes from the existence of a pair (z,y) of
future asymptotic points. In the context of a symbolic space this means that there is some N for
which [N ..00) = y[N .. 00).

For a minimal 7', any asymptotic pair z and y must be in distinct orbits. For if y = TPx, say,
then any limit point z == lim;_, Ty s periodic—since lim; T”(i)y must equal both z and T?z.
But T is minimal hence X has no periodic points (a periodic minimal map has no asymptotic
pairs). Thus p must have been zero.

Now topological minimal self-joinings says that for a pair (z,y) the orbit closure is either an
off-diagonal or is all of X x X. But suppose we have two points  and y which are future-asymptotic
under some shift k& (ie. x and T*y are future-asymptotic) and past-asymptotic under a different
shift s. Then the T' x T orbit closure of (z,y) consists of two off-diagonals, Dy U Dg. [Indeed, after
shifting y so that neither & nor s is zero, the pair (z,y) is not proximal.]

The exceptional points of Chacon’s map. This map fails to achieve topological minimal self-
joinings by the slimmest of margins —there is one bad pair of orbits. There are names x and y for
which z(—00..0) = y(—00..0) and z[0..c0) = y[1 .. 00). These names look like

r=7pq
o 5 (0.1)
Yy="psq
Ergodic Theory and Dynamical Systems, vol. 10, (1990), 745-761.
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where }3 is a past string, 3 a future string, and s is a letter from the alphabet (see [J,K]).

What to avoid. Asymptoticity cannot be avoided—any expansive system 7: X — X has future-
asymptotic pairs and past-asymptotic pairs (this well-known fact follows from theorem 2.1). What
must be prevented is that a pair (z,y) possesses, upto a shift, both future and past asymptoticity.

Say that a string is “valid” if it is a substring of some x in X. Suppose there existed pairs of
valid words V,, and W,,, whose lengths went to infinity, such that the concatenations

V., W, and V,sW,

were both valid strings. By taking a weak limit, the space X would be forced to have points x
and y as in (0.1).

To prevent this, we will construct X so that when a word V is sufficiently long, it determines
the letter which must follow it.

¢1 THE CONSTRUCTION

How might one go about building a shift-invariant symbolic space? Fix a finite alphabet A.
Suppose V is some collection of strings over A: strings which are finite, left-infinite, right-infinite,
or bi-infinite. Define C1(V) to be the set of names x € AZ for which:

Every finite substring of x is a substring of some V € ).

Since no mention of time is made in its definition, C1(V) is a shift-invariant subset of AZ. A fortiori
CI(CL(V)) = (V) and consequently

CI(V) is a closed shift-invariant subset of AZ.

The shift-left map on this forms a topological dynamical system.

Building the space X. Our alphabet will be {a, b, s}; “s” will be employed as a spacer between n-
blocks. For n =10,1,2,... we build two types of n-block
H? and H}
whose common length is denoted h,,. It will be convenient that the {h,}, be even numbers; we
leave verification to the reader that the operations done below do not prevent our arranging this.
Concatenation will be indicated by juxtaposition. However, we use ) to write iterated concate-
nation: For example, if Letter(i) denotes the i-th Roman letter then ®?:1 Letter(7) means abcde.
The expression 3x “ab” indicates ababab.
In the sequel, the symbols a and § take on the values 0 and 1. When not desiring to specify
the type of an n-block we will write H,,.
STEP A: Set HY =%a” and H} =“b".
STEP B: At stage n, with H? and H}! known, pick a K much larger than h,. For each a pick a
sequence of gap sizes
K-1
{9°(k) b
Ergodic Theory and Dynamical Systems, vol. 10, (1990), 745-761.
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with each g“(k) either O or 1. [We have suppressed the subscript n in K, and in g2 ]
STEP C: Define the two (n + 1)-blocks as follows.

K—-1
HY, = (@ HY" P g™ (k) x “s”]> HE.

k=0

Thus each n-block of type 1 is followed by a spacer; those of type 0 are followed by no spacer. The
type of the rightmost n-block must agree with the type of its enclosing (n + 1)-block.
Finally, let T" denote the shift-left map on X where: X = CI{HQ ‘ n €N }

DEFINITION. Say that a word W is neatly n-blocked if it can be written in the form

L—1
W = (@ HEO[B(0) x “s”]> HA®E) (1.1)

£=0

where each 3(¢) is 0 or 1.

Let Spacer,, (W) denote B(L). This is a slight abuse of notation since 5(L) depends on the
righthand side of (1.1) —which we have not bothered to show unique. However, this will cause no
difficulty where we need it, in the following lemma. ¢

CONSISTENCY LEMMA. For any pair M > N and each «
HY; is neatly N-blocked.

Thus for any x € X, each substring z[a .. b) can be extended to a larger enclosing substring z[a’ .. V')
which is neatly N-blocked.

Remark. Consequently, given any position ¢ on x there is a position j with
1 1
1 —=-hny <73<1+=h
!N =Sty
such that z[j..j +hny) = Hn.

PROOF. For any n and 8 the word H? is neatly (n — 1)-blocked, by definition. Evidently if
words U and V' are neatly (n — 1)-blocked and k := Spacer,,_;(U) then the concatenation

Uk x 57| V

is neatly (n — 1)-blocked. But STEP C implies Spacer, (H?) = Spacer, ,(H?) and so for any
word W:
W neatly n-blocked = W neatly (n — 1)-blocked.

By induction on n from M down to N + 1, the word H§; is neatly N-blocked. ¢

Ergodic Theory and Dynamical Systems, vol. 10, (1990), 745-761.
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Creating topological properties

The properties of T' depend on our algorithm for choosing, at stage n, the parameters K and
{ go‘(k)}fz_ol. Below we give a first approximation of these gap sequences; this will be refined by later
lemmas, whose proofs will require successive modifications to the sequences. These modifications
will not affect properties previously obtained.

FIRST VERSION: At stagen, set K = 4k for some large k. Let {g*(k) f:_ol equal the following.

x many « many s many s many
Fora=0: OOO-A--OO 111-A--11 OOO-A--OO 111-A--11
Fora=1": 101010 -« vveoeemeneeeens 1010
Len&h K

(1.2a)

Each row has the same number of 1’s. Thus H?; and H} | indeed have the same length.

The next two lemmas need some notation. Given two words V' and W of some length h and an
integer s, let “s + W7 indicate the word W shifted s units to the left. The phrase

“the intersection V' N [s + W] contains word U”
is to mean that there exists a position ¢ such that
Viii+u)=U and Wlii+s.i+s+u)=U
where u denotes the length of word U. (Thus ¢ must satisfy 0 <iand i+u < haswellas0 <i+s

and i + s+ u < h.)

OPPOSITE TYPES LEMMA. For any shift s satisfying |s| < $h,,, the intersection

HYN [s+ H}]

n
contains a copy of H?_;.

PROOF. Let h denote h,_1. Since the @« = 1 row of (1.2a) has an equal number of 1’s in its
first half as in its second half, shifting H! by at most %hn corresponds to a horizontal shift of
the bottom row of (1.2a), by at most half its length, relative to the top row. The interval where
the rows overlap will contain x many 0’s sitting above the periodic pattern 0101---01. Thus the
upstairs word H? will contain a periodic pattern of period h sitting above a periodic pattern in H}
with period 2k + 1 (the length of the string H?_; H! ;s which arises from the 01 gap pattern).

These two numbers h and 2h + 1 are relatively prime. Consequently if we have chosen

k> h-(2h+1) (1.2b)

then there will be some position, ¢, where the upstairs and downstairs periodic patterns start in
synchronism. Starting there,

HYli.i+h) = Hy | and [s+Hp|[i.i+2h+1) = H) (H}! ;s
Ergodic Theory and Dynamical Systems, vol. 10, (1990), 745-761.
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which gives the desired conclusion. ¢

The above lemma finds a common substring between two n-blocks; their relative shift is essentially
arbitrary (just not too big) but their types had to be different. The lemma below obtains a similar
conclusion where the restriction has been moved from the types to the shift.

ANY TYPES LEMMA. Given any shift t for which %hn < |t| < %hnﬂ, given any types a and (3,
the intersection

B
Hy oy 0 [t+ Hy
contains the word H?

Proor. Without loss of generality t is positive. Suppress the subscript and let K and h denote
K, and h,. Given a type v € {0,1} let i"(k) denote the position in H,) , commencing the k-th
copy, traversing left to right, of an n-block. Thus

H) ([i7(k)..i"(k) + h) = Hy, for k=0,1,..., K.

Note that i7(0) equals zero.

Picture the word H} ; written horizontally above the word HP +1 which has been shifted left
by t positions. Let ¥ denote the rightmost n-block in word t + H +1 which overlaps, by at least
%h, the leftmost n-block in H;', ;. In other words, pick k largest such that |s| < ;h where

s =i (k) —i%(0) — t.

The remark after the Consistency lemma (and that h is even) shows that such a k exists. Moreover
k > 1, since the given shift ¢ strictly exceeds %h
Suppose, for the sake of contradiction, that our lemma fails. The substrings

o [i%00) . i%(0) + h) and  HE [iP(k)..i% (k) + h)

are n-blocks, upstairs and downstairs respectively, with a relative shift of s. Were their types
different, our lemma would be proved by an application of the Opposite types lemma to these
n-blocks. Their types are consequently the same and so

92(0) = g2 (k).

But this implies that i (k+1)—i®(1) —t, the relative shift between the succeeding n-blocks upstairs
and downstairs, also equals s. Again we must be unable to apply the Opposite types lemma and so
their following gaps must also be equal. By inductively stepping across the upstairs and downstalrs
(n + 1)-blocks in this fashion we conclude that ¢g&(j) equals gn(k +j)forj=0,1,... K — k—1.

Periodicity in the gap sequence. An upper bound on % arises from its definition in that i? (E)
must be dominated by ¢ + %h and hence by %hnﬂ + %hn. Now each row of (1.2a) has about the
Ergodic Theory and Dynamical Systems, vol. 10, (1990), 745-761.
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same number of 1’s in its first half as in its second half. Hence whether 5 is 0 or 1 we conclude
that k is essentially dominated by %K . Certainly by magnanimously only asserting that

k< ;K (1.2¢)

we have absorbed any errors.

Evidently a must equal g: Otherwise we could have applied the Opposite types lemma to the
given (n+1)-blocks and concluded that their intersection contains an H?, hence a fortiori contains
an H? .

The preceding two paragraphs rewrite the conclusion of the “inductively stepping” paragraph
as

For 0 <j < 3Kn: gn(d) = g5 (k+j). (1.3)

This is a periodicity condition on a gap sequence. Thus our proof will be completed by altering
the definition of a gap sequence so as to make (1.3) impossible. This simply requires inserting a
few distinct “marker” words

U:=1001 V :=10001 W :=100001

which appear nowhere else in a gap sequence.

SECOND VERSION: At stagen, with H? and H} known: Pick an even integer x >> hy, - (2h,, + 1).
Define {g°®(k)} ' as follows.

k many x many x many x many
Fora=0: 0000.--00U1111---11V 0000.--00 W 1111...11
Fora=1:  1010---10U1010---10V 1010---10 W 1010- - - 10
Len&h K

Any subsequence of {g*(k) 5:—01 taking up at least a third of it, must contain one of the three
marker words. But a particular marker word appears nowhere else in the gap sequence. This
prohibits (1.3), since k is not zero. ¢

Proving proximality of points in different orbits. Here starts the proof that 1" has topological
minimal self-joinings. Choose points x,y € X which are not proximal. In several steps, the lemmas
above will imply that z and y must be in the same orbit.

Obtaining the shift progression {s,}52 . By the remark following the Consistency lemma there
exists a large interval containing, say, [—10h,, .. 10h,] such that

x[a .. b] is neatly n-blocked (1.4)

where a < —10h,, < 10h,, < b. Thus there exists an index

. 3 1
i€ [~3h, .. — 1hy] (1.5)
Ergodic Theory and Dynamical Systems, vol. 10, (1990), 745-761.
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such that x[i..i + h,,) is an n-block. Similarly, by applying the lemma to y we can find an index
j € [i — $hy i+ Shy] such that y[j..j + hy) = H,. Let

Sp=1—]
denote the relative shift between these two n-blocks.

The limit supremum of |s,| is finite. We show that there does not exist a sequence of n € N
along which s, gets arbitrarily large. Fix n and set t = s, = i — j. By its definition, || is
dominated by %hn. We would like to apply the Any types lemma to the two n-blocks at i and j.
Indeed we could, if we knew that |t| exceeded %hn_l. Since, however, it might not, simply pass to
a smaller value of the subscript. For note that for any m <n

i i4 hmy1) = x[i i+ hy) [0 hing1) = Hy[0 o hung1) = Hppgr.

Similarly, y[j .. 7 + hm+1) is an (m + 1)-block of some type. Pick the value m less than n such that
1 1
By the Any types lemma there now exists a position p such that

zp.p+hm-1)=yp.-.p+hm-1)

because they both equal H? ;.

This m depends on ¢t and so we write it as mlt]. If, along a subsequence, the shift progression
t(f) = sp(e goes to infinity (in absolute value) as £ — oo, then limy o m[t(¢)] equals infinity.
Thus x and y have equal, aligned, substrings of arbitrarily large length—they would be proximal,
contrary to our standing assumption. ¢

The point y is in the orbit of x. The preceding says that there is an infinite subset ' C N such
ROt i — 17 be as in the

that n — s, is constant, say, 17, on F. Fix an n € F and let ¢ and j
Obtaining the shift progression paragraph. Thus
xli.i+hy,)=Hy and ylj.j+hn)=HP

n n

for some a and 8. We may have taken n large enough that  and y have no equal, aligned, substring
of length equal to h,,_1. Consequently, the Opposite types lemma allows us to conclude that o = (3.
Since the type of a block determines the number of spacers following it,

fi.i') =ylj.J")

where i’ =i+ h, + a and j' = j+ h, + B. By (1.4) position i’ commences an n-block on x and
analogously for j/ on y; say x[i’ .7’ +hy) = HY and y[j’ .. '+ hn) = H'. As above, the Opposite
types lemma must fail to be applicable to this pair of blocks and so o’ equals /’.

Putting this all together yields

a:[i..i-i—L) = y[i— 17..i =17+ L)
Ergodic Theory and Dynamical Systems, vol. 10, (1990), 745-761.
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where L denotes h,, + a + h,,. Make explicit their dependence on n and write ¢(n) and L(n).
From (1.5) we have that

3 1
i(n) < —=hy, and i(n) + L(n) > _§hn + 2h, = ihn'
Thus i(n) — —oo and i(n) + L(n) — +oo as n — oo inside of F'. Consequently, y(—o00..0) equals
x(—00 .. 00) shifted left by 17.
Since y has been shown to be in the orbit of x, our map T fulfills the proximality condition for
topological minimal self-joinings. ¢

Minimality of T'. It suffices to show that given any valid word W and any x € X, there exists a
position i for which z [i .. i+len(W)) equals W. But X is the closure of { H2}22 | and so without loss
of generality W = H? for some n. By the Consistency lemma, the name z contains an (n+1)-block
of some type. And both types of (n + 1)-block contain H?.

Total minimality (7 is minimal for all non-zero n) can be seen directly by a similar argument—
but it also follows on general principles. The proximality condition of tmsj implies that T is
(topologically) weak-mixing. And it is well-known, [Ke|, that a weak-mixing minimal map is
totally minimal. ¢

Remark. It is not hard to see that the foregoing T' is uniquely ergodic. We remark without proof
that the gap sequences can be modified so that the map still has topological minimal self-joinings
but now supports two ergodic measures.

An application

The cartesian square T>? is not conjugate to T>® . First note that a point (z,y, z) is in a minimal
set for T°3 if and only if O(z) = O(y) = O(2). For the closure O7yx7(x,y) must be a minimal set
for T>? (since the projection map is a homomorphism and the homomorphic image of a minimal
set is minimal) and so y € O(x). Similarly z € O(z).

Discussions with Joe Auslander produced this proof that 73 is not a factor of T>2. For suppose

P X XX 2> XxXxX
were a homomorphism of T%2 onto T*3. Set a = (z, z,y) where x,y € X with y ¢ O(x). Set
a' = (w,z) = ¢ 1(a).

Evidently Orxrx7(a) is not dense, since the first two coordinates of a are equal. Thus Orxr(a’)
is not dense. Since T' has topological minimal self-joinings this implies that w and z are in the
same T-orbit; thus the orbit closure Op«r(a’) is a minimal set. Hence the ¢-image of this set,

6T><T><T(a>a

is a minimal subset of X x X x X. But by the paragraph above, this would imply that y is in the
T-orbit of x. ¢
Ergodic Theory and Dynamical Systems, vol. 10, (1990), 745-761.
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§2 HIGHER ORDER TOPOLOGICAL MINIMAL SELF-JOININGS

The N-fold generalization of topological minimal self-joinings is that for any N points z1,...,zN
inhabiting N different T-orbits, the tuple (z1,...,zx) is a transitive point for T*V. As before,
this is equivalent to asking that every such N points be proximal under 7.

Two-fold topological minimal self-joinings does not imply three-fold. Our example above
fails to have 3-fold topological minimal self-joinings, which can be seen as follows. Notice, for the
gap sequences chosen, that the sequence of type a begins with an «. Thus the (n 4 1)-block of
type 0 starts and ends with H? and the (n + 1)-block of type 1 begins and ends with an n-block
of its same type. This will imply the existence of three distinct points z,y, z € X such that (z,y)
are future-asymptotic and (y, z) are past-asymptotic. As argued earlier, minimality ensures that
neither = nor z is in O(y). Nor could z € O(x) since this implies that Opyr(x,y) consists of
two off-diagonals and thus is not dense. So the points {z, Ty, z} are in three distinct orbits and
yet ... they cannot be triply proximal.

— —
To make these names it will be convenient to let 0 and 1 denote certain right-infinite strings,
that is, points in AN. Define them inductively by

— —
0[0..hy,) = H? and 1[0.. h,) = H}, forn=20,1,2,....

n n

This produces valid strings because Hy,; commences with an H7. Similarly, since H7,; ends

— —
with H, the left-infinite pasts 0 and 1 specified inductively as

— —
0[-h,.0)=H? and  1[-h,..0)=H},

are also well-defined. Concatenate the futures to the pasts as follows:

D . 1 0 - .
x = 1s0 since H,,sH, is valid;
—— 0 0
y= 00 since H, H, is valid;
—— 0 1
z= 01 since H, H,, is valid.

These names x, y and z are points in X because the corresponding concatenations of blocks, listed
at right, are valid words. ¢

Four-fold minimal self-joinings cannot exist

In the case of symbolic systems, four-fold topological minimal self-joinings does not happen because
of the existence of asymptotic points. Any expansive system 7: X — X has a pair of distinct points
x,y € X which are future-asymptotic and a pair of points p,q € X which are past-asymptotic.
The T4 orbit of (p,q,x,y) is not dense.

To handle general not-necessarily-expansive maps, we need the following result, theorem 10.30
in [G,H], due to S. Schwartzman. For completeness we include a demonstration: the neat proof
below is slight variation of one due to Mike Boyle, Will Geller and Jim Propp. Say that two distinct
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12 JLF King

points x and y are future e-bounded if |T"x, T™y| < e for all n > 1 and define “past e-bounded”
analogously.

THEOREM 2.1. Suppose X is infinite. For any positive € there exists a future e-bounded pair.

PROOF. Suppose, for the sake of contradiction, that there is no future e-bounded pair. Let M
be the supremum of those natural numbers N for which there exists a pair =,y with

|z, y| > e and Vne[l..N): }T”x,T”y} <e. (%)
If M is infinite then there exists a pair zy,yy fulfilling () and without loss of generality
T = ]\}EnooxN and y = ]\/h—l;nooyN
exist. Evidently |z,y| > . Moreover, for each k € Z;
7%z, Thy| = lim |[T*y, Tfyn| < lime =

since T* is continuous. Thus one is forced to conclude that M is finite after all.
Any power of T is uniformly continuous, X being compact. So there exists § such that

|z, y| <6 == }me,Tmy‘ < ¢ for every m € [0.. M)

and so the maximality of M for (x) implies that ‘T‘la:, T_ly‘ < e. Applying this iteratively yields
that ‘ ‘
}T"x,T"y} <e€ fori=1,2,3,...

(In other words the family {T‘i}zl is equicontinuous.) Now cover X with finitely many, L, open

balls of diameter §. Let F' C X be any collection of L+ 1 points. For each integer N the set T (F)
has L + 1 points and so by the pigeon-hole principle there exists a pair x,y € F' of distinct points
such that TNz and T™Ny are in the same §-ball. Hence

Vm < N:  |[T"z,T™y| <e. (2.2)
Renaming = and y to x and yy we can drop to a subsequence N (i) / oo for which

IN1) =2Tne)=--- and Yna) =Yn@e) =----

Call these two points = and y. Now (2.2) holds for N replaced by any N(i); hence for N = oc.
A fortiori x and y are future e-bounded. ¢

The next several paragraphs are devoted to strengthening this result to produce an e-bounded pair
x,y in distinct orbits ie., with y ¢ O(x).
The semigroup of continuous maps. Consider a compact metric space (X, |-, -|). Then (C, |-, |

is a complete metric space, where C denotes the set of continuous maps f: X — X under the supre-
mum norm

If, 9]l = sup [f(z), g(2)|.
reX
Ergodic Theory and Dynamical Systems, vol. 10, (1990), 745-761.
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Any f € C is uniformly continuous and so there is a function €¢(-), with e¢(r) \, 0 as r \, 0, such
that

f (@), f(w)] <ep(l2,y])
for all z,y € X. Letting fg denote composition f o g, the triangle inequality yields

179" fall < I, £l + 24 (llg', gll)

for any f’,¢’, f,g € C. Thus (f,g) — fg is a continuous map from C x C — C.
Let H C C denote the subcollection of invertible maps, necessarily homeomorphisms. It is
possible for a sequence of f,, € H to have its limit in the complement C \ H. However

If g = lim,,_.o f, with each f,, € H and f, fx = frf. for
all n and k, then g € H.

For whenever two homeomorphisms f and F' commute then
=L FT [ = {7 e (FF), Fh o (FF)|| = [|B £

Hence || f,, % fo | = || fn, fill and so {fn_l}io is Cauchy and G = lim,, f, " exists. Letting I
denote the identity map,

Gg= lim f;'fo=1= lim f.f, " =gG
n—oo n—oo

and one concludes that g is invertible.
Define the norm || f|| to be || f, || and note that

I£gll < WIf, 2l +ex(llg, 211) = [L£1 + llg]

for all f,g € C. If g € H then [|g7"|| = [|g7" 0 g, T o g|| = [|g||. Thus

1 gll = 1A= Tlgll

Fix henceforth a T' € H and let A(7T") denote its automorphism group consisting of those S € H
such that ST =T'S. Here is a standard type of argument for normed groups.

UNCOUNTABILITY LEMMA. Suppose there exist mutually commuting maps {Pn}(;o C A(T), with
P, # I, such that || P,|| — 0. Then for any positive € the ball

{SeAT) |5 <e}
is uncountable.

PROOF. By dropping to a subsequence of the {P,} we can arrange that > ° || P,|| < ¢ and, for
each K,

T

k=K+1
Ergodic Theory and Dynamical Systems, vol. 10, (1990), 745-761.



14 JLF King
For a bit string b € {0,1}N define Rx € A(T) by

Ry = PPV ... poio),
Thus || Ry, Ryiml| < Zgjjﬁ_l | P || which is less than || Py||; hence {Rx}%_, is Cauchy. So
Sy = limg o R exists and ||S;|| < e. Moreover, S;; commutes with 7" because each Ry commutes
with 7" and composition is continuous.

Finally, if bit strings b and ¢ are distinct, then Sy # Sz. For let K be smallest for which
b(K) # c¢(K); say b(K) =1 and ¢(K) = 0. Then

HSESc*_lH _ HPK ﬁ P}f(k)PI;c(k)H

k=K+1
> Pl = DB
k=K+1
> ||Pgll = > 1Pl
k=K+1
which is positive. ¢

PROPOSITION 2.3a. Suppose a € X is a fixed point for T and there exists a sequence of points
2, — a and negative times {k(n)}io such that

inf‘Tk(”)zn,a‘ > 0.

Then for all 6 > 0 there exists a point y # a for which (y, a) is future §-bounded.

PrOOF. Reduce ¢ to smaller than the above infimum and discard those z, which are not
within 0 of a. By moving each k(n) closer to zero, if need be, we may now assume that

Ve € (k(n)..0] : T 2, a] < 6. (2.4)

Without loss of generality y = lim,, 7%z, exists. Evidently |y, a| > 6. If lim, k(n) # —oo then
we could drop to a subsequence of {k(n)} which was constant, say, always —7. But then

ly,a|] = lim ‘Tk(”)zn,a‘ = lim ‘T_7zn,T_7a‘ =0,
n— 00 n—o0o

which is a contradiction. Thus k(n) — —oo. So given any m > 0, eventually m + k(n) is in
(k(n) ..0] for all large n. Consequently,

‘Tmy,Tma‘ = ‘Tmy,a‘ = lim }Tm+k(”)zn,a} <9

n— oo

by inequality (2.4). Thus y and a are future d-bounded. ¢
Ergodic Theory and Dynamical Systems, vol. 10, (1990), 745-761.
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PROPOSITION 2.3b. Suppose #X = oo and every minimal set is finite. Then for all € there exists
a future e-bounded pair in distinct orbits.

PRrROOF.  First suppose X consists only of periodic points. Then we can pick a convergent
sequence {z,}° of points in distinct orbits, with

Vn : OT(Zn) 75 OT(CL)

where a = lim,, z,. Thus a is a fixed point of S := TP, where p denotes the least period of a.
Choose ¢ sufficiently small that

For all y € X and m € [0..p), ly,al| <6 = |T"y,T"a| <e.

Consequently, having taken ¢ smaller than the distance between any two of the p points of Or(a),
it will suffice to show that

There exists a point y # a such that the pair

(y,a) is future 6-bounded with respect to S. (2.5)

We may as well assume that no z,, can play the role of y and so there exist integers {k(n)}n such
that
}Sk(”)zn,a‘ > 4.

Since each z,, is a periodic point, we may take each k(n) to be negative. The preceding proposition
may now be applied to S to produce a point y which fulfills (2.5).

There exists an x € X with infinite T-orbit, is the other possibility. Pick j(n) oo such that
a =Tz exists and is a point in a minimal set. Defining p, S and § as above condition (2.5), it
suffices to establish that condition.

Dropping to a subsequence of { j(n)}n we can assume that all the j(n) are congruent modulo p;
say, to r. By replacing x by T~"x we can write

S kMg g

where k(n) is the negative number —[j(n) — r]/p. Setting z, = S~*™ 1z we have that
inf‘Sk(")zn,a} = |z,a] > 0

and so we may again apply to S the preceding proposition. ¢

We now can obtain the desired strengthening of Schwartzman’s Theorem.

BOUNDEDNESS THEOREM, 2.6. Suppose T' is a homeomorphism of an infinite compact metric
space X . Then for every positive € there exist a future e-bounded pair x,y € X with O(x) # O(y).

ProOOF. By the foregoing proposition we may assume that 7" has an infinite minimal set and
so we may take T' to be minimal. Suppose, for the sake of contradiction, that the conclusion fails
for e. By Schwartzman’s theorem there exist distinct y and z which are future e-bounded. Hence
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z = T*y for some integer ¢, and T* # I. By minimality, for any point x there exists N (i) / oo
such that TN®y — z and thus TV® 2z — T*z. Hence |z, T x| < ¢ for all € X. In other words,

7] <.
Choosing a sequence &,, \, 0 we obtain integers ¢(n) such that
HT‘J(”)H—M), as n — oo,

and T = I. Thus we are entitled to the conclusion of the Uncountability lemma.
Fix some x € X. For any S in the e-ball in A(T') we have that

|T"2, T"(Sz)| = [Tz, S(T"z)| < ||IS]| < ¢

for all n € Z. So the conclusion of our purported theorem can fail only if the point S(z) lies in
the T-orbit of x, a countable set. Since there are uncountably many S in the e-ball, there must
exist distinct S1, Sy € A(T) such that Si(z) equals Sy(x). But then Sy (T"z) = Sy(T"x) for every
integer n and so S7; and Sy agree on the T-orbit of x, a dense set. Thus S; = S5. ¢

No map has 4-fold topological minimal self-joinings. Suppose 7: X — X is minimal and
#X = oo. Fixing a small ¢, the Boundedness theorem gives us future and past bounded pairs
fyf',p,p € X such that

T f, T"f'| <e and [T "p, T "p'| <e forn=0,1,2,...

with O(f) # O(f’) and O(p) # O(p'). '

First suppose that the four points manage to inhabit only two orbits; say p = T°(f) and
p =T s(f') for some integers i and s. Any point (x,y) of Opyr(f, f') must satisfy |z,y| < e or
|z, T®y| < e, depending on whether it is in the future or past orbit closure of (f, f’). If T" has even
just 2-fold tmsj then Opy7(f, f') equals X x X and so, fixing any point y, this implies that

B(y) U B(Tsy) =X,

where B(y) is the closed radius-¢ ball centered at y. But we could have taken ¢ to be so small that
no two radius-¢ balls can cover X.

Suppose instead that {f, f’,p,p’} inhabit three orbits; say T*(p’) = f’ and p ¢ O(f). Then
the triple (f, f/,T°p) belies 3-fold tmsj since its T>3 orbit closure contains no triple of the form
(2,2, 2) with |z, 2/| > e.

Similarly, if {f, f’,p,p’} inhabit four orbits then

<Z,Z,,Z, Z/> ¢ 6T><4(f7 f,7p7p,> )

which prohibits 4-fold topological minimal self-joinings.
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