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Preliminaries. A polynomial p() is an “N-
topped polynomial ” if Deg(p) < N . So x2 − 2x
and x+

√
7 are 3-topped, but x3 + x− 5 is

not. The set of N -topped polynomials is an N -
dimensional VS.♥1

Taylor polynomials

The setting is an open interval J ⊂ R. Use
DiffN = DiffN(J→R) for the set of N -times dif-
ferentiable fncs. This is a superset of

CN = CN(J→R) ;

those, whose N th derivative is continuous.
For posint N , a point Q∈J and f ∈ DiffN−1,

define
“ the N th Taylor polynomial of f , cen-
tered at Q”

1a:

to be the unique N -topped polynomial p() whose
zeroth through [N−1]st derivatives, at Q, agree
with those of f . I.e, these N equations hold:

p(Q) = f(Q), p′(Q) = f ′(Q), p′′(Q) = f ′′(Q),

. . . , p(N−1)(Q) = f (N−1)(Q) .

One easily checks that p(x) must be the RhS
of (1b), below. That is,

TN(x) = Tf
N,Q(x) :=

∑
k∈[0 .. N)

f (k)(Q)
k!
· [x−Q]k1b:

is the N th Taylor polynomial of f .
Define the “the N th remainder term of f ” ,

written Rf
N,Q or just RN , by

f(x) =: TN(x) + RN(x) .1c:
♥1Abbreviations: VS for vector space; FTC for Funda-

mental Theorem of Calculus; posint for positive integer.

Properties of TN . Use TN,Q[f ] as a synonym
for Tf

N,Q, with the same convention for the RN

operator and friends. Often times either the fnc,
f , or the center-point, Q, is implicit, and we drop
it from the notation.

For a scalar α and f,g ∈ DiffN−1, note that

TN [α · f ] = α ·TN [f ] and
TN [f + g] = TN [f ] + TN [g] .

2:

I.e, TN is a linear operator from DiffN−1 to the
VS of polynomials.

3: Lemma. For f ∈ DiffN , and Q,x ∈ J :

T f ′

N =
[
Tf
N+1

]′
. Also,3a: ∫ x

Q
Tf ′

N,Q(t)· dt = Tf
N+1,Q(x) − f(Q) , and3b: ∫ x

Q
Rf ′

N,Q(t)· dt = Rf
N+1,Q(x) .3c: ♦

Note. Our (3a) says TN almost commutes with
differentiation, D [The Taylor-series operator does
commute with differentiation.]

Letting I denote the identity operator, we have
that I = TN + RN . Since I is linear and almost
commutes with D, so is/does RN . �

Pf of (3a). WLOG Q=0. By defn, Tf ′

N (x) equals

N−1∑
k=0

[f ′](k)(0)

k!
·xk =

N−1∑
k=0

f (k+1)(0)

[k+1]!
· d

dx
[xk+1]

setting ` := k+1
============

d

dx

[ N∑
`=1

f (`)(0)

`!
· x`

]
.

This indeed equals d
dx

[Tf
N+1(x)], since the d

dx
kills-

off the constant `=0 term. �

Pf of (3b). Courtesy FTC, integrating (3a) gives∫ x

Q
Tf ′

N,Q(t)· dt = Tf
N+1,Q(x)−Tf

N+1,Q(Q)

= Tf
N+1,Q(x) − f(Q) . �
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Taylor’s Theorem for R
We produce two estimates♥2 of the remainder
term. In the results below, N ∈ Z+.

4: Lem. Fix an f ∈ DiffN(J→R). At each x ∈ J ,
function q 7→ Tf

N,q(x) is differentiable, with value

d
dq
Tf
N,q(x) = f (N)(q) · [x−q]N−1

[N−1]!
. Thus,4a:

d
dq
Rf
N,q(x) = − d

dq
Tf
N,q(x) .4b: ♦

Proof. WLOGx=7. For natnum k and posint `,
define

Ak(q) := f (k)(q)
k!
· [7− q]k , and

B`(q) := f (`)(q)
[`−1]!

· [7− q]`−1 .

Now A0(q) = f(q)·1, so d
dq
A0(q) = f ′(q) = B1(q).

And for k positive, d
dq
Ak(q) equals

1
k!

[
f (k+1)(q)·[7− q]k + f (k)(q)·k·[7− q]k−1· [ 1]

]
note
=== Bk+1(q) − Bk(q) .

[The above [ 1] is d
dq [7− q].] Thus d

dq
of Tf

N,q(7) is
(notationally dropping the “q”)[
BN −BN−1

]
+
[
BN−1 −BN−2

]
+ · · ·+

[
B2 −B1

]
+B1 .

Telescoping, this equals BN , which is RhS(4a).
[Exer.: Prove (4b) from (4a), in two sentences.] �

5: TayThm-1. Consider a fnc f ∈ DiffN(J→R).
For distinct points Q,x ∈ J , there exists a point
c=cx=cN,Q,x,f strictly between Q and x, such that

Rf
N,Q(x) = f (N)(cx) · [x−Q]N

N !
.5a:

I.e,f(x) =
[
N−1∑
k=0

f (k)(Q)· [x−Q]k

k!

]
+ f (N)(cx)· [x−Q]N

N !
.♦

♥2The TayThm-1 estimate, (5a), is called Lagrange’s
form of the N th remainder term.
Our TayThm-2, (6a), is one of several Integral forms of

the remainder.

Pf. WLOG Q = 3 and x = 7. Define M ∈ R by

RN,3(7) = M · [7−3]N

N !
.5b:

(Possible, since [7− 3]N 6= 0.) Create a function

ϕ(q) := RN,q(7)−M · [7−q]N
N !

.5c:

Our “multiplier” M was defined so that
ϕ(3) = 0. And ϕ(7) = 0−M ·0 = 0. (We used that
[7− 7]N=0N is zero, since N is positive.) [Exer.:Why is
RN,7(7) = 0?]

Rolle’s thm now applies to ϕ on [3, 7], asserting
a point c ∈ (3, 7) st. ϕ′(c) = 0. By Lemma 4,

0 = f (N)(c) · [7−c]N−1

[N−1]!
− M · [7−c]N−1

[N−1]!
· [ 1] . �

Since c 6= 7, quantity [7− c]N−1 is not zero; so we
may divide, to conclude that 0 = f (N)(c) +M .
From (5b), then, RN,3(7) = f (N)(c) · [7−3]N

N !

6: TayThm-2. For f ∈ CN(J) and points Q,x ∈ J :

Rf
N,Q(x) = 1

[N−1]!

∫ x

Q
f (N)(s) · [x− s]N−1 ds .6a: ♦

Pf. WLOG Q = 3 and x = 7, making our goal

RN,3(7)
?
= 1

[N−1]!

∫ 7

3
f (N)(s) · [7− s]N−1 ds .†:

Function θ(s) := TN,s(7) is C1, since f ∈ CN.
Note θ(7) = f(7), so

RN,3(7)
def
== f(7)−TN,3(7)

= θ(7) − θ(3) =
∫ 7

3
θ′(s) ds‡:

by FTC, since θ′ is continuous on J . And RhS(‡)
equals RhS(†), courtesy Lemma 4. �
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Aside: An incorrect formula. The 1st edition of
Creighton Buck’s text has (6a), but the the 3rd ed. (P.148,

top) asserts that Rf
N,Q(x) equals

W f
N,Q(x) := 1

[N−1]!

∫ x

Q

f (N)(s) · [s−Q]N−1 ds .6b:

Just because RhS(6b) differs from RhS(6a) doesn’t mean
that it is wrong; there are several formulae for RN ITOf
integrals. The following example, however, indeed shows
that W f

N,Q 6= Rf
N,Q.

Let f := [z 7→ z3], Q := 0 and N := 2. Thus T2(x)

equals 0 + 0·x, so
�� ��R2(x) = x3 . Since f ′′(s) = 3·2·s, our

W2(x) equals

1
1!

∫ x

0

3·2·s · [s− 0] · ds = 2s3
∣∣s=x

s=0
= 2x3 .∗:

So W2(1) = 2 6= 1 = R2(1). In contrast, RhS(6a) equals∫ x

0
3·2·s · [x− s] ·ds, which equals[

x ·
∫ x

0

3·2·s ·ds
]
− RhS(∗) = x · 3x2 − 2x3 .

And this, happily, equals x3 note
=== R2(x). �

Applications of Taylor’s theorem

Here are five uses.

7: Translating a polynomial. Suppose you
wish to express polynomial

p(x) = C0 + C1x+ · · ·+ CN−1x
N−1

in form
∑
k∈[0 .. N)Bk·[x− 6]k. You could solve a

system of N many linear eqns in N unknowns.
But p equals its N th TayPoly (centered anywhere

we want). So each Bk is the kth coeff of Tp
N,6. Thus

Bk equals p(k)(6)/k!. �

8: Limits. Suppose f ∈ Diff2(R→R) and lim
x→∞

f(x)

exists in R, and limsup
x→∞

∣∣∣f ′′(x)
∣∣∣ < ∞. Then

f ′(x)→ 0 as x↗∞. ♦

Set-up for both proofs. WLOG
�



�
	∗: lim

x→∞
f(x) = 0

and |f ′′()| ≤ 8. �

Pf.Fixing ε>0, we will produce an L∈R for which:

∀x ≥ L: |f ′(x)| ≤ 5ε .

Consider TayPoly Tf
2,x(y) = f(x) + f ′(x)[y − x]

for N=2. The TayThm-1 says for each pair x<y
there is a point cx,y ∈ (x, y) for which

f(y) = f(x) + f ′(x)[y − x] + f ′′(cx,y)
2

[y − x]2.

Solve for f ′(x). Since |f ′′(cx,y)| ≤ 8,

|f ′(x)| ≤
∣∣∣f(y)−f(x)

y−x

∣∣∣+ 8
2
·[y − x] .

By (∗), there is L ∈ R st. |f | ≤ ε2/2 on [L,∞).
Setting y = x+ ε, we have that for each x ≥ L:

|f ′(x)| ≤
∣∣∣ ε2
y−x

∣∣∣+ 4·[y − x]

≤ ε2

ε
+ 4ε = 5ε . �

Proof, barehands. Could β := liminf
x→∞

f ′(x) > 0?
No; for then the graph of f would grow at some
minimum rate, thus could not have a horizontal
asymptote. Hence β ≤ 0. Similarly α ≥ 0, where
α := limsupx→∞f

′(x). The upshot: α ≥ 0 ≥ β.
FTSOC, suppose α > β. WLOG α > 0; other-

wise, replace f by f . Set ε := α/3.
Let a1 be, say, the smallest non-negative

“x-value” such that f(a1) ≥ 2ε. Since

α > 2ε > ε > β ,

the following process never stops: Take bn to be
the smallest “x” exceeding an for which f(bn) ≤ ε.
Take an+1 to be the smallest value exceeding bn for
which f(an+1) ≥ 2ε.

Let Jn := [an, bn]. Each restriction f ′�Jn ≥ ε,
for n = 1, 2, . . . . By FTC,∫ an

bn
f ′′ = f ′(an)− f ′(bn) ≥ 2ε− ε = ε .

So ε ≤
∫
Jn
|f ′′| ≤ 8·[bn − an]. Hence each bn − an

dominates 8
ε
; thus the numbers an,bn ↗∞.

By (∗), then, f(bn)− f(an)→ 0, as n↗∞. But

f(bn)−f(an) =
∫ bn

an
f ′ ≥

∫ bn

an
ε

≥ [bn − an]ε ≥ 8
ε
·ε = 8.�
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N th-derivative test for extrema. With J ⊂ R an
open interval and f ∈ C∞(J→R), suppose Q∈J
is a critical point for f , ie. f ′(Q) = 0. We seek
a test determining if f has a strict local-max/min
at Q. To this end, define MinNZD(f,Q) to be

inf
{
k ∈ Z+

∣∣∣ f (k)(Q) 6= 0
} note
∈ [1 ..∞] .9a: �

9b: Min/Max Prop’n. With J, f,Q as above:
Suppose N := MinNZD(f,Q) is in [2 ..∞).
When N is. . .

. . . even: If f (N)(Q) > 0 then f has a strict-local-
min; else, f has a strict-local-max, at Q.

. . . odd: Then f has a strict-SignChange at Q. ♦

Pf.Let V := f (N)(Q), which is not zero. Since f (N)

is continuous at Q, there is a small open interval
I 3 Q for which f (N)�I has the same sign as V .
Our Prop’n will be established by (9c), below.

Let T := Tf
N,Q and R := Rf

N,Q. Recall that
f (k)(Q) = 0, for each k ∈ [1 .. N). For each x,
then, T(x) = f(Q), and thusR(x) = f(x)−f(Q).

For x 6= Q, there is a point τx, between x and Q,
with R(x) = 1

N !
f (N)(τx) · [x−Q]N . Taking x ∈ I

forces τx ∈ I, so

f (N)(τx) has the same sign as V .

But f(x)− f(Q) = R(x), so the sign-fnc gives

Sgn
(
f(x)− f(Q)

)
= Sgn(V ) · [Sgn(x−Q)]N ,

for each x ∈ I with x 6= Q.
9c: �

10: Lemma. Set J := [ 1, 1]. Imagine a function
f ∈ Diff3(J→R) with

f(0) = 0 = f ′(0) .10a:
f( 1) = 0 and f(1) = 1 .10b:

Then there exists τ ∈ J◦ with f ′′′(τ) ≥ 3. ♦

Counting degrees-of-freedom. What would it
mean if each derivative {f (k)}∞k=3 were identically-
zero? Then f is 3-topped polynomial (i.e, at most
quadratic) and so comes from a 3-dim’al VS.

But (10a,10b) are four conditions, making it
plausible that we cannot fulfill them when con-
strained to the VS of 3-topped polynomials. �

Proof. ISTProduce points α,β ∈ J◦ with

f (3)(α) + f (3)(β) ≥ 6 .10c:

Let T := Tf
3,0 and R := Rf

3,0. Define a number M
by

T(x) = f(0) + f ′(0)x+

M︷ ︸︸ ︷
f ′(0)

2
x2 by (10a)

====== M ·x2 .

Thus T(±1) = M ·[±1]2 = M . From (10b), then,

1 = f(1)− f( 1) = [M + R(1)]− [M + R( 1)]

= R(1)−R( 1) .

By TayThm-1, ∃α ∈ ( 1, 0) and ∃β ∈ (0, 1) with

R(1) = 1
6
· f (3)(β) · [ 1− 0]3 = 1

6
· f (3)(β) ;

R( 1) = 1
6
· f (3)(α) · [ 1− 0]3 = −1

6
· f (3)(α) .

This, using the previous display, yields (10c). �
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DiffyQ. A fnc f ∈ Diff2(R→R) with f(7) = 0
and f ′(7) = 0, satisfies

f ′′ + f = 0 . [I.e, the zero-fnc.]†:

Prove that f = 0, using Taylor’s thm, as follows:
First, show that f ∈ C∞. Then, for a

fixed x0∈R, argue that
∣∣∣f(x0)

∣∣∣ is as small as de-
sired, by upper-bounding with Taylor-remainder
terms from Our Taylor’s pamphlet on the
Teaching Page.

Proof. Let ‖·‖ mean ‖·‖sup. Induction on n ∈ N
shows that each f (n) is diff’able. Moreover

∀k,` ∈ N: If k ≡4 ` then f (k) = f (`).‡:

As f (2)(7) = f(7) = 0 and f (3)(7) = f ′(7) = 0,
property (‡) tells us that each Tf

n,7 is the zero-
function. In particular, with Rn denoting Rf

n,7,

∀n ∈ Z+: Rn(x0) = f(x0) .

Upper bounds. Let J be the compact in-
terval going from 7 to x0. Let Mn := ‖f (n)�J‖.
Define

M := Max(M0,M1,M2,M3) .

Then M dominates each ‖f (n)�J‖, courtesy (‡).
From TayThm-2, then, |f(x0)| equals |Rn(x0)|
which equals

1
[n−1]!

·
∣∣∣∣∫ x0

7
f (n)(t) · [x0 − t]n−1· dt

∣∣∣∣
≤ 1

[n−1]!

∫ x0

7
|f (n)(t)| · |x0 − t|n−1· dt

≤ M
[n−1]!

∫ x0

7
|x0 − t|n−1· dt .

Let L := Len(J). Then

|f(x0)| ≤ M
[n−1]!

∫ x0

7
Ln−1· dt = M · Ln

[n−1]!
.

This last goes to zero, as n↗∞. �

.
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Radius of Convergence

Series notations. Customs about how “series” is
used in the context of “convergence of a series”
are a bit strange. A “series ~e ” is a sequence
~e = (((ek)))

∞
k=0, but

♥3 where the word “series” hints
to the reader our interest in its sum

∑
(~e). This

sum is the limit –when it exists– of the corre-
sponding “partial-sum sequence” ~s, where

sN :=
∑

k∈[0 .. N)

ek .

Use
�� ��~s = PΣ(~e) to indicate this partial-sum rela-

tion between sequences. Here, phrase “series ~e is
convergent” means that lim(~s) exists and is finite.
So

∑
(~e) := lim(~s).

To clarify, the nth partial sum means the sum
of the first n terms, regardless of the initial index.
For example, suppose ~b = (((b`)))

∞
`=5, and ~e = PΣ(~b).

Then e3 = b5+b6+b7, and e0 = 0.
Example: Let ~b := (((k2 )))

∞
k=1 and ~a := PΣ(~b).

Then an = 1
6
·[2n3 + 3n2 + n]. �

11: Root-test lemma. Given a series ~e ⊂ C, define

Λ := limsup
n→∞

n

√
|en|

note
∈ [0, ∞] .∗:

If Λ < 1 then ~e is an absolutely-convergent se-
ries.

If Λ > 1 then ~e is “magnificently divergent” Not
only |en| 6→ 0, but indeed limsup

n→∞
|en| = ∞. ♦

Proof. Let an := |en|,�� ��Case: When Λ < 1. ISTShow that ~a is a con-
vergent series. Pick ρ with Λ < ρ < 1. Take K
large enough that supn≥K n

√
an ≤ ρ. Hence∑

n≥K
an ≤

∑
n≥K

ρn <∞. And
∑

n∈[1 ..K]
an <∞.�� ��Case: When Λ > 1. Pick ρ with 1 < ρ < Λ.

By (∗), the set J :=
{
n
∣∣∣ n
√
an > ρ

}
is infinite.

And each n ∈ J has an > ρn. �

♥3The index will usually start at zero, but it doesn’t have
to. The sequence ~e might be (((ek)))

∞
k=24, or (((ek)))

∞
k= 5.

A function f :R→R is eventually positive if�� ��∃K s.t ∀x ≥ K: f(x) > 0 . Thus a degree-k poly,

f(x) := Ckx
k + · · ·+ C1x+ C0 ,

is eventually positive IFF f has positive leading-
coeff, Ck > 0.

Power-series notation. A sequence ~c ⊂ C and
point Q ∈ C determine a power series

PS~c,Q(z) :=
∑∞

n=0
cn · [z −Q]n .12a: �

From the notation we sometimes drop the the
center of expansion, just writing PS~c. This is espe-
cially true when the center of expansion is 0∈C.

Use “PS” to abbreviate the phrase “power se-
ries”. Use McS to abbrev Maclaurin Series ; a PS
centered at Q=0. E.g McS~c(z) =

∑∞
n=0 [cn · zn].

Radius of Convergence. The set of z ∈ C for
which RhS(12a) converges is called the “set-of-
convergence ” . We write it SoC(~c, Q)

It will turn out that the SoC comprises an
open ball, possibly of radius 0 or ∞, together
with some of the points on the boundary of this
ball. This open ball of convergence is writ-
ten BoC(~c, Q). Its radius is the radius of con-
vergence of RhS(12a), and is written RoC(~c).♥4

So RoC := RoC(~c) is always a value in [0, ∞], and
BoC(~c, Q) = BalRoC(Q). �

12b: RoC Lemma (Cauchy, 1821. Hadamard, 1888.)
Contemplate power series PS~c,Q, as in (12a). Let

Ω := limsup
n→∞

n

√
|cn|

note
∈ [0, ∞].

Then RoC(~c) = 1/Ω where, here, we interpret 1
0

as ∞ and 1
∞ as 0. ♦

♥4The argument to RoC is a sequence. So we can write
the RoC of PS f(x) :=

∑∞
n=0 n

2xn as RoC(n 7→ n2), but
not as RoC(n2) nor as RoC(f).

Filename: Problems/Analysis/Calculus/taylor.jk.latex
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Proof sketch. Set an := |cn|. ISTConsider con-
vergence at a non-negative x∈R. Applying the
Root-test,

limsup
n→∞

n

√∣∣∣cnxn∣∣∣ = limsup
n→∞

[x · n
√
an ]

= x · limsup
n→∞

n
√
an = x · Ω =: Λ .

So Λ is less/greater than 1, as x is less/greater
than 1

Ω
. �

13: Three examples. Aside: On a set Ω, each subset
B ⊂ Ω engenders 1B , the “indicator function of B ” . It
is the fnc Ω→{0, 1} sending points in B to 1, and pts in its
complement, Bc := ΩrB, to 0. [So 1B + 1Bc is constant-1.]
E.g, 1Primes(5)=1 and 1Primes(9)=0.

Let’s apply the above (12b). Define

P := Primes; D := Odds; S := {1 + n2 | n∈N} .

Consider this power series:
∞∑

n=0

3n·1P(n) · xn = 9x2 + 27x3 + 243x5 + . . . .13a:

Its RoC is 1/3, since there are∞ly many primes.
A funkier PS, centered at 8, is

∑∞
k=0

[
3k·1D(k) + 4k·1S(k)

]
· [x− 8]k .13b:

Since n
√

3n + 4n
n→ 4, and |S| =∞, the RoC is 1

4
.

Even more interesting is this PS:∑∞
n=0

[
5n·1P(n)·1S(n)

]
· xn .13c:

As of March2017, its RoC is unknown. If there are
∞ly many primes♥5 of form 1 + n2 (conjectured, but
unproven) then RoC = 1

5
; otherwise RoC =∞, and

the PS is a polynomial. �

♥5For the curious, see Wikipedia on Landau’s problems.

14: Lemma. For each K ∈ R: limx↗∞
x
√
xK = 1.

Moreoever, for each rational function h() := p()
q()

which is eventually positive, lim
n↗∞

n

√
h(n) = 1.

Proof. Use L’Hôpital’s rule. Etc. ♦

15: Same-RoC lemma. Consider a sequence
~c = (((c0, c1, . . .))) ⊂ C, and let RoC := RoC(~c).
For each natnum K, and for each rational func-
tion g 6= Zip, these coefficient sequences

i : (((0, K. . . , 0, cK , cK+1, cK+2, . . .)))

ii : (((cK , cK+1, cK+2, . . .)))

iii :
(((
g(n)·cn

)))
∞
n=0

give rise to power-series with RoC = RoC. ♦

Proof sketch. Parts (i) and (ii) follow from (12b).
Part (iii) follows from (14) and (12b). �

16: Diff/Integrate a PS. We differentiate and inte-
grate, term-by-term, the G := PS~c,0 power-series:

F (x) =
∑∞

j=1
bj·xj , where bj :=

1
j · cj−1.

G(x) =
∑∞

k=0
ck·xk .

H(x) =
∑∞

`=0
d`·x`, where d` := [`+1]·c`+1.

16a:

Lemma (15) tells us that the three PSes have the
same RoC.

Observe that PS~d is the term-by-term deriva-
tive of PS~c. And PS~b is the term-by-term integral
of PS~c. Does the same relation hold between the
functions that these PSes determine? �

16b: Term-by-term PS Theorem. Given a se-
quence ~c ⊂ R, define sequences/fncs ~b, ~d, F,G,H
by (16a) and let RoC := RoC(~c). Then

RoC(~b) = RoC = RoC(~d) .†:

With B := BoC(~c), moreover,

∀z ∈ B: F (z) =
∫ z

0
G .‡:

And G is in C∞(B→R), with G′ = H. ♦

Filename: Problems/Analysis/Calculus/taylor.jk.latex



Page 8 of 11 Radius of Convergence Prof. JLF King

16c: Coro. Suppose PS G(x) :=
∑∞
j=0 cj·[x−Q]j

has positive RoC. Then this PS is the Taylor series
of G, centered at Q. ♦

Pf of (16b). We’ll establish that G′=H; the in-
tegral result (‡) follows analogously. ISTo fix a
posreal ρ < RoC, let U := Balρ(0), and prove
G′=H when restricted to U . We will apply the
DUC Thm (Derivative uniform-convergence) from notes-
AdvCalc.pdf to these fncs (defined only on U)

fn(x) :=
∑

j∈[0 .. n]
cjx

j .

By definition of coeff-sequence ~d from (16a),

f ′n(x) =
∑

k∈[0 .. n)
dkx

k .

In order to show that seq (((f ′n)))
∞
n=1 is sup-norm

Cauchy, pick a number V with ρ < V < RoC.
Now 1

V
> limsup

n→∞
n

√
|dn| since, by (15), RoC(~d)

equals RoC. Thus there is an index K with

∀n ≥ K: n

√
|dn| < 1

V
.

We henceforth only consider indices n dominat-
ing K. For each k ≥ n, then,

|dk| ≤ 1/V k .16d:

Sup-norm. For x ∈ U and indices `>n,

f ′`(x)− f ′n(x) =
∑

k∈[n .. `)
dkx

k .

From (16d), then,∣∣∣f ′`(x)− f ′n(x)
∣∣∣ ≤ ∞∑

k=n

|x|k

V k
.

Since U owns x,∣∣∣f ′`(x)− f ′n(x)
∣∣∣ ≤ ∞∑

k=n

ρk

V k
=
[ ρ
V

]n
· C ,

where C is the positive constant 1/[1− ρ
V

].
Taking a supremum over all x ∈ U yields∥∥∥f ′` − f ′n∥∥∥ ≤ [ ρ

V

]n
· C ,16e:

for each pair ` > n ≥ K. Sending n↗∞ sends
RhS(16e)→ 0.

The limit limn fn(0) exists, equaling c0. Now
apply the DUC Thm. [Derivative uniform conver-
gence.] �
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A power-series with a new center. We show
that a function defined by a PS is analytic in its
entire ball-of-convergence.

17: The setting. We have a point P ∈ C and a
sequence ~a ⊂ C such that α ∈ (0, ∞], where
α := RoC(~a). This engenders a C∞-fnc from
Balα(P )→C, by

F(z) :=
∑∞

k=0
ak· [z − P ]k .17a:

Fix a new center Q∈C with |Q− P | < α. Thus

β ∈ (0, ∞], where β := α− |Q− P |.
Moreoever, Balβ(Q) ⊂ Balα(P ).17b: �

18: New-center theorem. Take P,Q, α, β,~a and ~b
from (17). For each natnum k, this summation is
absolutely convergent:

bk :=
∑∞

N=k
aN ·

(
N
k

)
·QN−k ∈ C .18a:

Moreoever, RoC(~b) ≥ β > 0. This value

G(z) :=
∑∞

k=0
bk· [z −Q]k ,18b:

agrees with F(z), for each z ∈ Balβ(Q).18c:

Lastly, for each natnum k,

bk = 1
k!
· F (k)(Q) .18d:

In other words, RhS(18b) is the Taylor series
for F , centered at Q. ♦

Proof. WLOG P = 0. Fix a point Z ∈ Balβ(Q).
Writing Z = Q+ [Z −Q], its N th-power is

ZN =
∑N

k=0

(
N
k

)
·QN−k · [Z −Q]k .

Thus, since Z ∈ Balα(P ),

f(Z) =
∑∞

N=0
aN · ZN

=
∞∑
N=0

N∑
k=0

aN ·
(
N
k

)
·QN−k·[Z −Q]k︸ ︷︷ ︸

hN,k

.

This is a sum, in a certain order, over the
set H :=

{
(((N, k))) ∈ N×N

∣∣∣ N ≥ k
}
. We need this

sum to be absolutely convergent. The sum∑∞
N=0

∑N
k=0 |hN,k| equals

∞∑
N=0

N∑
k=0

|aN |·
(
N
k

)
·|Q|N−k·|Z −Q|k =

∞∑
N=0

|aN |·Y N ,∗:

where Y := |Q|+ |Z −Q|. From Z ∈ Balα(0)
and (17b), we conclude that Y < α. From the
proof of Root-test lemma (11,P.6), the righthand
side of (∗) is finite.

Since S :=
∑∞
N=0

∑N
k=0 |hN,k| is finite, we can

reverse the order of summation and conclude that

S =
∞∑
k=0

∞∑
N=k

|hN,k|

=
∞∑
k=0

[ ∞∑
N=k

|aN |·
(
N
k

)
·|Q|N−k

]
· |Z −Q|k .

We could have chosen our Z 6=Q, thus allowing di-
vision by |Z −Q|k. Hence, each bracketed sum is
finite. So each sum in (18a) is absolutely conver-
gent, and we have a well-defined number bk.

For a general Z ∈ Balα(0), reversing the origi-
nal sum gives

f(Z) =
∞∑
k=0

∞∑
N=k

hN,k

=
∞∑
k=0

[ ∞∑
N=k

aN ·
(
N
k

)
·QN−k

]
· [Z −Q]k ,

which equals
∑∞
k=0 bk · [Z −Q]k.

Establishing (18d). Corollary 16c tells us
that

k! · bk
by (16c)
====== G(k)(Q)

by (18c)
====== F (k)(Q) .

Hence (18d). �
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19: Prop’n. Power-series

F(z) :=
∑∞

n=0
an·[z −Q]n∗:

has positive RoC. Suppose ~y is a sequence of dis-
tinct complex numbers converging to Q, such that

∀j ∈ Z+: F(yj) = 0 .

Then ~a is all-zero, and F is the zero function. ♦

Proof. WLOG, each yj 6= Q. FTSOC, suppose
~a 6= ~0; let L be the smallest index with aL 6= 0.
Formally dividing (∗) by [z −Q]L gives PS

G(z) :=
∑∞

k=0
bk·[z −Q]k ,

where each bk := aL+k. Each yj−Q 6= 0, so

G(yj) = F(yj)/[yj −Q]L = 0 .

But RoC(~b) = RoC(~a) > 0, so G is cts in a nbhd
of Q, and thus G(Q) = lim

(
G(~y)

)
= 0. This

contradicts that G(Q) = b0 = aL 6= 0. �

20: PS Uniqueness Thm. Imagine power-series

F(z) :=
∑∞

n=0
an· [z − P ]n and

G(z) :=
∑∞

n=0
bn· [z − P ]n

where B := BoC(~a) ∩ BoC(~b) is non-void. Sup-
pose there is a set Y ⊂ B st. F�Y = G�Y , and Y
has a cluster point, Q0, in B . Then ~a = ~b, so
F = G. ♦

Remark. It does not suffice for Y to have a cluster-
point on the boundary of B: Distinct functions
F(z) := sin( 1

z−7
) and G := −F have Taylor series

with RoC = 7. Yet

F(yk) = 0 = G(yk) , for each posint k,

where yk := 7 + 1
2πk

. �

Proof of (20). Subracting PSes gives us a PS

f(z) :=
∑∞

n=0
cn· [z − P ]n

so that f�Y ≡ 0, making
�� ��~c

?
== ~0 our goal.

For each q ∈ B := BoC(~c), let U(q) denote the
largest centered-at-q open ball that fits inside B.
By the New-center thm, the Taylor-series for f ,
centered at q, converges to f on all of U(q).

Pick a Y -cluster-point Q0 ∈ B. By (19), f is
identically zero on U(Q0).

On the line-segment running betweenQ0 and P ,
we can pick a (finite) list of points

Q0, Q1, . . . , QK−1, QK := P ,

such that each Qk ∈ U(Qk−1). Arguing induc-
tively, since f is identically zero on U(Qk−1), the
the Taylor-series at Qk has all-zero coeffs. This
therefore holds at P . So ~c = (((0, 0, 0, . . .))). �

21: Coro. Suppose F and G are analytic functions
on some connected open set V ⊂ C. If

{z ∈ V | F(z) = G(z)}

has a cluster point in V , then F = G. ♦
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Abel’s theorem

We state this for a PS centered at Q ∈ C.

22: Abel’s thm. With en∈C, consider power-series

f(z) :=
∑∞

n=0
en · [z −Q]n

with RoC RoC ∈ (0,∞), as well as a point z0

on the circle-of-convergence, |z0 −Q| = RoC. If
f(z0) is finite, then

lim
t↗1

f
(
t·z0 + [1− t]Q

)
= f(z0) .

I.e, f is continuous along radial lines out to points-
of-convergence on the boundary of BoC. ♦

Reduction. WLOG Q = 0. WLOG RoC = 1 and
z0 = 1. So

f(x) =
∑∞

n=0
en · xn22a:

with RoC(~e) = 1, and
∑∞
n=0 en finite. Subtract a

constant from e0 so that, WLOG,

0 = f(1)
def
==

∞∑
n=0

en
def
== lim

`↗∞
s` ,22b:

where s` :=
∑
n∈[0 .. `] en is the `th-partial-sum.

Having fixed ε>0, we will show

∀x ∈ [β, 1): |f(x)| ≤ 2ε ,

for a posreal β<1 that we will produce. �

Pf. Consider points x ∈ J := [0, 1). Limit (22b)
says we can take L so large that

∀` ≥ L: |s`| ≤ ε .

And
∑∞
`=L s` x

` equals xL ·∑∞n=0 sn+L x
n. So∣∣∣∣[1− x] ·

∞∑
`=L

s` x
`

∣∣∣∣ ≤ xL · [1− x] ·
∞∑
n=0

ε xn

= xL · ε ≤ ε ,

since |x| < 1. Let’s summarize.

∀x ∈ J :
∣∣∣∣[1− x] ·

∑
`∈[L ..∞)

s` x
`

∣∣∣∣ ≤ ε .22c:

Defining β. Wanting [1− β] ·∑`∈[0 ..L)|s`| < ε,
simply fix a β<1 sufficiently close to 1. Thus

∀x ∈ [β, 1):
∣∣∣∣[1− x] ·

∑
`∈[0 ..L)

s` x
`

∣∣∣∣ ≤ ε .22d:

Absolute convergence. At a point x ∈ J , se-
ries (22a) and

∑∞
j=0 x

j = 1
1−x are each absolutely

convergent. So we can multiply the series and re-
group to conclude:

1
1−x · f(x) =

[ ∞∑
j=0

1 · xj
]
·
[ ∞∑
k=0

ekx
k
]

=
∞∑
`=0

[ ∑
j+k=`

1 · ek
]
x`

note
===

∞∑
`=0

s` x
` .

For each x ∈ [β, 1), then, (22d) and (22c) give

|f(x)| =
∣∣∣[1− x] ·

∑∞
`=0

s` x
`
∣∣∣ ≤ ε + ε . �
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