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Preliminaries. A polynomial p() is an “N-
topped polynomial” if Deg(p) < N So z? — 2x
and =+ /7 are 3-topped, but z%®+z—5 is
not. The set of N-topped polynomials is an N-

dimensional VS.%!

Taylor polynomials

The setting is an open interval J C R.  Use
Diff" = Diff"(J—R) for the set of N-times dif-
ferentiable fncs. This is a superset of
cY = CYJ-R);
those, whose N*® derivative is continuous.
For posint N, a point Q€J and f € Diff¥ =1,
define

“the N** Taylor polynomial of f, cen-
tered at (7’

to be the unique N-topped polynomial p() whose
zero™ through [N—1]*" derivatives, at Q, agree
with those of f. I.e, these N equations hold:

p(Q) = f(Q), P(Q) =F(Q), »'(Q) =Ff(Q)
PP Q) = fNVWQ).

One easily checks that p(z) must be the RhS
of (1b), below. That is,

1b: Ty(z) = Tl

la:

Z Q1 — QF

)

is the N*" Taylor polynomlal of f.
Define the “the Nt remainder term of f”,
written R"/\V_Q or just Ry, by

lc: flz) = Ty(z)+Ry(z).

Y1 Abbreviations: VS for vector space; FTC for Funda-
mental Theorem of Calculus; posint for positive integer.

Webpage http://people.clas.ufl.edu/squash/

Properties of Ty. Use Ty ,[f] as a synonym

for TJ{/,Q’ with the same convention for the Ry
operator and friends. Often times either the fnc,
f, or the center-point, (), is implicit, and we drop
it from the notation.

For a scalar o and f,g € Diff¥ !, note that

Tyla- fl] = a-Ty[f] and
Tn[f+4g] = Twlf]+ Tnlgl.

Le, Ty is a linear operator from Diff¥~! to the
VS of polynomials.

3: Lemma. For f € Diff"¥, and Q.x € J:
Ja: T = [T]fvﬂ}/. Also,

[Tofey @t = Thogl) ~ S@), and
/Q?gCRJ{f:Q(t)'dt = R]{f+1,Q(37)- O

Note.  Our (3a) says Ty almost commutes with
differentiation, 1D [The Taylor-series operator does

commute with differentiation.]

Letting I denote the identity operator, we have
that I = Ty + Ry. Since I is linear and almost
commutes with D, so is/does Ry. U

Pf of (3a

Nzél [F1®0) _ NE: F=+1(0) -i[xkﬂ]

). WLOG Q=0. By defn, T/ () equals

X —_—
k=0 k' k=0 [k‘f‘l]' dx
setting ¢ := k+1 d |: al f(@) (O) (}
p———— . :L‘ .
dz L7 ¢

This indeed equals - [T{ 1 ()], since the L kills-
off the constant (= O term.

Pf of (3b). Courtesy FTC, integrating (3a) gives

/QxTJJ\c//,Q(t)'dt = T]]\c/-&-l,Q(x) - Tz{r+1,Q(Q)
= Tl — f@). ¢
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Taylor’s Theorem for R

We produce two estimates”? of the remainder
term. In the results below, N € Z .

4: Lem. Fix an f € Diff (J—R). At each x € J,
function q T]{,‘q(:p) is differentiable, with value

r— N—1
daz diqT]J\cf,q(x) = f(N)<Q)' U[V*ﬂ! . Thus,
ab: SRf(0) = —LTf (2). 0

Proof. WLOG z=7. For natnum k and posint ¢,

define 1) i
Arlg) = %l L.[7—q", and
) _
BZ(Q) = J[gfgt]lg) ) [7 - Q]e !
Now Ag(q) = f(q)- 1 s0 £ Ao(q) = f'(q) = Bi(q)-

And for k positive, {-Ax(q) equals

%UW”@%W—dk+f®@)hW—d“*Pﬂ
22 Biii(q) — Bilg).

[The above [-1] is %[7—(1]] Thus (%1 of T]J\cﬂq(7) is
(notatlonally dropping the ”)

[Bn — By-1] + [Bn-1— By_2] + -+ [Bs — B1] + By.

Telescoping, this equals By, which is RhS(4a).
[Exer.: Prove (4b) from (4a), in two sentences.] ¢

5: TayThm-1.  Consider a fnc f € Diff¥ (J—=R).
For distinct points Q,x € J, there exists a point
C=C,=CnN,Q... f Strictly between () and x, such that

2— 01N
ba: Rigle) = fM(e) - .

_ N—-1 (k) z—QN
Le f(z)=| X f (575 | + S (er)- 5750

“2The TayThm-1 estimate, (5a), is called Lagrange’s
form of the N*® remainder term.

Our TayThm-2, (6a), is one of several Integral forms of
the remainder.

Taylor’s Theorem for R
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Pf. WLOG @ =3 and x = 7. Define M € R by

5b: RN73(7) = M - [7;\[3!]]\] .

(Possible, since [7 — 3]Y #0.) Create a function

5c: ©(q) = Ryy(7)— M - %.
Our “multiplier” M was defined so that

©(3) =0. And ¢(7) =0 — M-0 = 0. (We used that
[7 —7]N=0V is zero, since N is positive.) [Exer.: Why is
Ry 7(7) = 07]

Rolle’s thm now applies to ¢ on [3, 7], asserting
a point ¢ € (3,7) st. ¢'(c) = 0. By Lemma 4,

Since ¢ # 7, quantity [7 — ¢]¥ ! is not zero; so we

may divide, to conclude that 0 = -f)(c ) + M.
From (5b), then, Ry3(7) = f)(c) - 7]\}5]

6: TayThm-2. For f € CN(J) and points Q,x € J:
- [N 1 /f

Pf. WLOG () = 3 and = = 7, making our goal

6a: RNQ S}N’lds(}

T: RN73(7) 2 [1V11]!/37f(N)<8) [7—5]N71 ds .

Function 0(s) = Ty.(7) is C!, since f € CV.
Note 6(7) = f(7), so

Ry ;(7) & f(7)
i = 0(7)

— Tys(7)
—0(3) = /379'(5) ds

by FTC, since #' is continuous on J. And RhS(})
equals RhS(t), courtesy Lemma 4. ¢

Filename: Problems/Analysis/Calculus/taylor.jk.latex
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Aside: An incorrect formula. The 15¢ edition of
Creighton Buck’s text has (6a), but the the 3" ed. (P.148,
top) asserts that R]{LQ(J?) equals

6b: WA];Q(Z') = — QN lds.

(s)-[s

1
(N-1]

Just because RhS(6b) differs from RhS(6a) doesn’t mean
that it is wrong; there are several formulae for Ry ITOf
integrals. The following example, however, indeed shows
that Wy, o # Ri o-

Let f := [z 23], Q 7OandN = 2. Thus Ty(z)
equals 0 + 0-z, so . Since [”(s) = 3-2-s, our
Wo(x) equals
*: %/32-5.[5—0]. ds = 280 = 22°.

0

So Wh(1) =2 # 1 = Ry(1). In contrast, RhS(6a) equals
/Ow 3:2:s - [x — s] - ds, which equals
z-3x% — 223,

E ~/z3-2~s~ds} — RBS(x) =

And this, happily, equals z° == Rs(x). O

Applications of Taylor’s theorem

Here are five uses.

7: Translating a polynomaial.
wish to express polynomial

Suppose you

1

p(z) = Cy +Ciz 4+ Cy_yzN™

in form >4c(o ny Br-[z — 6]". You could solve a

system of N many linear eqns in N unknowns.

But p equals its N** TayPoly (centered anywhere
we want). So each By, is the k' coeff of TY, ;. Thus

*)(6)/k!. O

8: Limits. Suppose f € Diff*(R—R) and lim f(z)

exists in R, and limsup N(l’)‘ < 0o.  Then
T—r 00

f'(x) =0 as x,o0. O

By equals p

Set-up for both proofs. WLOG | * E hm f(z) = 0]
and |f"()] <8.

Applications of Taylor’s theorem
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Pf. Fixing >0, we will produce an LR for which:
Vo > L. |f'(z)] < 5e.

Consider TayPoly T/ . (y) = f(x) + ['(x)[y — 2]
for N=2. The TayThm-1 says for each pair z<y
there is a point ¢, , € (z,y) for which

fly) = fl@)+ @)y
Solve for f'(x). Since |f"(c,,)| <8,
f(@)] < || 4 5y —a].

By (%), there is L € R st. |f| <&%/2 on [L, ).
Setting y = = + ¢, we have that for each x > L:

|f'(z)] < ly — ]
< %2 + 4 = be. ¢

—x] + 7f,/(gz’y)[y — z)?.

Proof, barehands. ~ Could = liminf f(x) > 07

No; for then the graph of f Would grow at some
minimum rate, thus could not have a horizontal
asymptote. Hence § < 0. Similarly o« > 0, where
« = limsup, . f'(x). The upshot: a >0 > /3.

FTSOC, suppose a > 5. WLOG « > 0; other-
wise, replace f by —f. Set ¢ := «/3.

Let «a; be, say, the smallest non-negative
“r-value” such that f(a;) > 2. Since

a > 2 >¢e > 3,

the following process never stops: Take b, to be
the smallest “x” exceeding a,, for which f(b,) < e.
Take a,,+1 to be the smallest value exceeding b,, for
which f(a,.1) > 2e.

Let J, = [a,,b,]. Each restriction f’|,
forn=1,2,.... By FTC,

b TP = fan) = fi(by) > 2 —e = e.

Soe < [, |f" <8][b, —a,]. Hence each b, — a,
dominates g; thus the numbers a,,.b,, 7 .

By (), then, f(b,) — f(a,) — 0, as n "oco. But

Fn)an) = [7 2 [

b _an] Zg

> ¢

n - )

=84

Filename: Problems/Analysis/Calculus/taylor.jk.latex
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N*_derivative test for extrema. With J C R an
open interval and f € C*(J—R), suppose Q€J
is a critical point for f,ie. f'(Q) = 0. We seek
a test determining if f has a strict local-maz/min

at . To this end, define MinNZD(f, Q) to be

note

9a: inf{k ez, | fP(Q) #0} "€ [1.00]. [
9b: Min/Max Prop'n. With J, f, @ as above:
Suppose N := MinNZD(f, Q) is in [2 .. 00).
When N is. ..

.even: If fN)(Q) > 0 then f has a strict-local-
min; else, f has a strict-local-max, at Q).

...odd: Then f has a strict-SignChange at Q).

Pf.Let V := fM)(Q), which is not zero. Since fV)
is continuous at @), there is a small open interval
I 5 @ for which f™)|; has the same sign as V.
Our Prop'n will be established by (9c¢), below.

Let T = T{VQ and R = R{V’Q. Recall that
f®(Q) =0, for each k € [1..N). For each z,
then, T(x) = f(Q), and thus R(z) = f(z)— f(Q).

For x # @, there is a point 7., between x and @,
with R(z) = & fM(7,) - [x — Q]V. Taking x € I
forces 7, € I, so

f™)(7,) has the same sign as V.
But f(z) — f(Q) = R(x), so the sign-fnc gives

Sen(f(z) - £(Q)) = Sgn(V) - [Sgn(z -~ Q)Y
for each x € I with z # Q.

9c: ¢

Applications of Taylor’s theorem

10: Lemma. Set J := [-1,1]. Imagine a function
f € Diff*(J—R) with

10a: f(0) =0 = f'(0).
10b: f(-1)=0 and f(1)=1.
Then there exists T € J° with f" (1) > 3. O

Prof. JLF King

Counting degrees-of-freedom. What would it
mean if each derivative { f*)}2 . were identically-
zero? Then f is 3-topped polynomial (i.e, at most
quadratic) and so comes from a 3-dim’al VS.

But (10a,10b) are four conditions, making it
plausible that we cannot fulfill them when con-
strained to the VS of 3-topped polynomials. [

Proof. ISTProduce points «,3 € J° with
10c: )+ P (B) > 6.
Let T := Tg;o and R = Rg;o. Define a number M
by M
—~

T(z) = f(0)+ f/(0)x + L0y 2L prp2.

Thus T(+1) = M:[+1]* = M. From (10b), then,

1= f(1)-f1) = [M+R®1)] - [M+R(-1)]
= R(1) - R(-1).

By TayThm-1, 3a € (-1,0) and 33 € (0, 1) with

OB L -0P = OB
SOa) L0 = 5 fO(a).

This, using the previous display, yields (10c). 4

R(1) =
R(-1) =

D= D=
D= D=

Filename: Problems/Analysis/Calculus/taylor.jk.latex
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DiffyQ. A foc f € Diff’(R—R) with f(7) = 0
and f'(7) = 0, satisfies

B "+ f = 0. |[Le, the zero-fnc.|

Prove that f = 0, using Taylor's thm, as follows:

First, show that f € C°. Then, for a
fized xo€R, argue that ‘f(xg)’ is as small as de-
sired, by upper-bounding with Taylor-remainder
terms from Qur Taylor’s pamphlet on the
Teaching Page.

Proof. Let ||-|| mean |-||sup. Induction on n € N
shows that each f(™ is diff’able. Moreover

t: VkleN: If k = ¢ then f® = 5O,

As fO(7) =-f(7) =0 and fO)(7)=-f'(7) =0,
property (1) tells us that each Tfﬂ is the zero-
function. In particular, with R,, denoting Rfm,

Vn € Zy: Ry(zo) = f(wo)-

Upper bounds. Let J be the compact in-
terval going from 7 to mo. Let M, = ||f™],].
Define

M = MaX(Mo,Ml,MQ,Mg) o
Then M dominates each || f™],||, courtesy (1).

From TayThm-2, then, |f(zo)| equals |R,(zo)]
which equals

0
e TGRSR
zo
<gim [ IFPO! o -t at

0
< M / |z — ¢t dt.
7

[n—1]!

Let L = Len(J). Then

fao)l < gy [Tt at = M- gy

[n—1]! [n—1]!

This last goes to zero, as n " oc. ¢

Filename: Problems/Analysis/Calculus/taylor.jk.latex
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Radius of Convergence

Series notations. Customs about how “series” is
used in the context of “convergence of a series”
are a bit strange. A ‘“series €” is a sequence
¢ = (e),—,, but”® where the word “series” hints
to the reader our interest in its sum > (€). This
sum is the limit —when it exists— of the corre-
sponding “partial-sum sequence” S, where

SN = Z €L .

kel0..N)

Use m to indicate this partial-sum rela-
tion between sequences. Here, phrase “series € is
convergent” means that lim(s) exists and is finite.
So > (€) := lim(8).

To clarify, the n'" partial sum means the sum
of the first n terms, regardless of the initial index.
For example, suppose b = (b,);"., and € = P2(b).
Then e3 = b5+bg+07, and ¢y = 0.

Example: Let b= (k2);°, and a:= P2(b).
Then a, = ¢-[2n® + 3n® + n]. O

11: Root-test lemma. Given a series € C C, define

limsup {/|ey,| e [0, +o0] .

n—o0

x: A =

If A < 1 then € is an absolutely-convergent se-
ries.

If A > 1 then € is “magnificently divergent” Not
only |e,| # 0, but indeed limsup |e,| = +oc0. O

n—o0

Proof. Let a,, = |e,|,

[CASE: When A < 1} ISTShow that a is a con-
vergent series. Pick p with A < p < 1. Take K
large enough that sup, .. /a, <p. Hence
Ya, < Y pt < . And Y a, < oo.

n>K n>K nel. K]

[CASE: When A > 1J Pick p with 1 < p < A.
By (%), the set J = {n ’ va, > p} is infinite.
And each n € J has a, > p". ¢

“3The index will usually start at zero, but it doesn’t have
to. The sequence € might be (ex)yeo4, OF (€x) 4 _s-

Radius of Convergence
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A function f:R—R is eventually positive if
[HK stV > K: f(x) > 0}. Thus a degree-k poly,

f(x) = Ckxk++C’1x+Cg,

is eventually positive IFF f has positive leading-
coeft, Cj, > 0.

Power-series notation. A sequence ¢ C C and
point () € C determine a power series

o0

12a: PSQQ(Z) = ano e z—Q". O

From the notation we sometimes drop the the
center of expansion, just writing PSg. This is espe-
cially true when the center of expansion is 0€C.

Use “PS” to abbreviate the phrase “power se-
ries”. Use McS to abbrev Maclaurin Series; a PS
centered at Q=0. E.g MdSz(z) = 302 [cn - 2"].

Radius of Convergence.  The set of z € C for
which RhS(12a) converges is called the “set-of-
convergence”. We write it SoC(c, ())

It will turn out that the SoC comprises an
open ball, possibly of radius 0 or oo, together
with some of the points on the boundary of this
ball. This open ball of convergence is writ-
ten BoC(c,()). Its radius is the radius of con-
vergence of RhS(12a), and is written RoC(c).”*
So RoC := RoC(c) is always a value in [0, +oo], and
BoC(c, Q) = Balgoc(Q)- O

12b: RoC Lemma (Cauchy, 1821. Hadamard, 1888.)
Contemplate power series PSg g, as in (12a). Let

note
Q=1 \/|cn| € ]0,+o0].
imsup  {f|c,| [0, +o0]

Then RoC(€) = 1/Q where, here, we interpret &
as +oo and é as 0. O

“4The argument to RoC is a sequence. So we can write
the RoC of PS f(z) = Yoo n®z™ as RoC(n — n?), but
not as RoC(n?) nor as RoC(f).

Filename: Problems/Analysis/Calculus/taylor.jk.latex
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Proof sketch.  Set a,, := |c,|. ISTConsider con-
vergence at a non-negative z€R. Applying the
Root-test,

limsup [ -
n—o0

limsup
n—oo

an |

') cnx”‘ =

= z-limsup Va, = x-Q = A.

n—00

So A is less/greater than 1, as x is less/greater

than é ¢

13: Three examples. ASIDE: On a set €2, each subset
B C € engenders 1, the “indicator function of B”. It
is the fnc 2—{0, 1} sending points in B to 1, and pts in its
complement, B¢ := Q~ B, to 0. [So 15 + 1z¢ is constant-1.]
E.g, 1primes(5)=1 and 1pimes(9)=0.

Let’s apply the above (12b). Define
P := Primes; D := Odds; S := {1 +n* | neN}.

Consider this power series:

> 3m1p(n)

Its RoC is 1/3, since there are ooly many primes.

A funkier PS, centered at 8, is

13a: cx™ = 972 + 2723 +2432° + .. ..

13b: ZZ"ZO [3’“-1D(k) + 45 15(k)| - [x — 8)F.

Since /3" + 4" % 4, and |S| = oo, the RoC is 1.

Even more interesting is this PS:

13c: ZZOZO {5"-1]1»(71)-15(71)} ca".

As of March2017, its RoC is unknown. If there are
ooly many primes”* of form 1 + n? (conjectured, but
unproven) then RoC = ; otherwise RoC = oo, and
the PS is a polynomlal O

“SFor the curious, see Wikipedia on Landau’s problems.

Radius of Convergence
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14: Lemma. For each K € R: lim, o VK =1.

Moreoever, for each rational function h() := %
which is eventually positive, hfm “/h(n) =
Proof. Use L'Hopital’s rule. Etc. O

15: Same-RoC lemma. Consider a sequence
¢ =(cg,c1,...) CC, and let RoC = RoC(c).
For each natnum K, and for each rational func-
tion g # Zip, these coefficient sequences

i: (0, K.,0, ¢k, Cri1, Ciraay---)
ii: (Cx, Crat1, Ciay---)

i (g(n) cn)n 0

give rise to power-series with RoC = RoC. O

Proof sketch. Parts (i) and (ii) follow from (12b).
Part (iii) follows from (14) and (12b). ¢

16: Diff/Integrate a PS. We differentiate and inte-
grate, term-by-term, the G := PSg( power-series:

F(zx) = Z] ) b;-x? | where b; = Login
16a: G(z) = Zk o Gk k.
H(z) = Y dea’, where dy = [(+1]-crs1.
Lemma (15) tells us that the three PSes have the
same RoC.

Observe that PSy is the term-by-term deriva-
tive of PSg. And PS;; is the term-by-term integral
of PSz. Does the same relation hold between the
functions that these PSes determine? O]

16b: Term-by-term PS Theorem. Given a se-
quence ¢ C R, define sequences/fncs b,d, F, G, H
by (16a) and let RoC := RoC(C). Then

i RoC(b) = RoC = RoC(d).

With B := BoC(c), moreover,

I: Vze B: F(z / G.

And G is in C*(B—R), with G’ = H. O

Filename: Problems/Analysis/Calculus/taylor.jk.latex
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16c: Coro.  Suppose PS G(x) == 352 ¢;:[x — Q)
has positive RoC. Then this PS is the Taylor series
of G, centered at (). O

Pfof (16b). We’ll establish that G'=H; the in-
tegral result (1) follows analogously. ISTo fix a
posreal p < RoC, let U := Bal,(0), and prove
G'=H when restricted to U. We will apply the
DUC Thm (Derivative uniform-convergence) from notes-
AdvCalc.pdf to these fncs (defined only on U)

fn(x) = Zje[o..n] cjajj :
By definition of coeff-sequence d from (16a),
falz) = ZkE[O..n) U

In order to show that seq (f.),—, is sup-norm
Cauchy, pick a number V with p < V' < RoC.

Now & > limsup ¢/|d,| since, by (15), RoC(d)
equals RoC. Thus there is an index K with
Vn > K: "]dn\<%.

We henceforth only consider indices n dominat-
ing K. For each k > n, then,

16d: de] < 1)V,

Sup-norm. For x € U and indices {>n,
/ ! _ k
From (16d), then,

) xk
i) = ) < % s
Since U owns x,
e k n
i) = fu@)| < Y = [

where C' is the positive constant 1/[1 — £].
Taking a supremum over all z € U yields

fi-fl < [&]"c.

16e: ‘ < [V

Radius of Convergence
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for each pair ¢ > n > K. Sending n oo sends
RhS(16e) — 0.

The limit lim, f,(0) exists, equaling ¢y. Now
apply the DUC Thm.
gence. | ¢

[Derivative uniform conver-

Filename: Problems/Analysis/Calculus/taylor.jk.latex
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A power-series with a new center. We show
that a function defined by a PS is analytic in its
entire ball-of-convergence.

17: The setting. We have a point P € C and a
sequence a C C such that o € (0,+0c], where
a = RoC(a). This engenders a C>*-fnc from

Bal,(P)—C, by
17a: F(z) = ZZO:O a- [z — PJ*.
Fix a new center Q€C with |Q — P| < a. Thus

B € (0,+oc0], where f = a—|Q — P|. -

110 Moreoever, Balg((Q)) C Bal,(P).

18: New-center theorem. Take P,Q,«, 3,a and b
from (17). For each natnum k, this summation is
absolutely convergent:

18as: b, = Z?Zk ay - (]]X) QN ke C

Moreoever, RoC(b) > 8 > 0. This value

o0

18b: G(z) = > e[z —Q,
18c:  agrees with F(z), for each z € Balg(Q).

Lastly, for each natnum k,

18d: by = L -TFPQ).
In other words, RhS(18b) is the Taylor series
for F, centered at (). O

Proof. WLOG P = 0. Fix a point Z € Balg(Q).
Writing Z = Q + [Z — Q], its N*'-power is

2 = YL@z -alt
Thus, since Z € Bal,(P),
12) = 3o gan - 2"

= 3 Y av(1) Q" HZ- Q"

N=0 k=0

hN Kk

Radius of Convergence
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This is a sum, in a certain order, over the
set H = {(N, k) € NxN ’ N > k:} We need this
sum to be absolutely convergent. The sum
3550 3o vl equals

() N
SN lanl- ()@Y 1z - QlF

N=0 k=0

o0
= 2 lawlY™,
N=0

where YV = |Q|+|Z —Q|. From Z € Bal,(0)
and (17b), we conclude that Y < «a. From the
proof of Root-test lemma (11, P.6), the righthand
side of () is finite.

Since S = S%_o Sn, |hn x| is finite, we can
reverse the order of summation and conclude that

S = ZZIhNkI
=0 N=k

- Z[Z anl-() 101" - 12 - QFF

k=0"-N=k

We could have chosen our Z#(Q), thus allowing di-
vision by |Z — Q|*. Hence, each bracketed sum is
finite. So each sum in (18a) is absolutely conver-
gent, and we have a well-defined number b,.

For a general Z € Bal,(0), reversing the origi-
nal sum gives

f(Z) = Z Z hN,k:
k=0 N=k

= 3| S av () Q" 12 -k,

k=0

which equals Y22, by, - [Z — Q.

Establishing (18d). Corollary 16¢c tells us

that

by (16(: by(lSc

k- by G (Q) FR(Q).

Hence (18d). ¢
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19: Prop'n. Power-series

oo

Zn:() an[z — Q"

has positive RoC. Suppose ¥y is a sequence of dis-
tinct complex numbers converging to (), such that

2 F(z) =

Then a is all-zero, and F is the zero function. ¢

Proof. WLOG, each y; # Q. FTSOC, suppose
a # 0; let L be the smallest index with a; # 0.
Formally dividing () by [z — Q]* gives PS

G(2)

o0

= Zk:() bk[z - Q]k )
where each by := aryx. Each y;—Q # 0, so
Gly;) = Fly)/ly; — Q1" = 0.

But RoC(b) = RoC(&) >

of @, and thus G(Q) =
contradicts that G(Q) =

> 0, so G is cts in a nbhd
hm(g(y)) — 0. This
=ap #0. ¢

Radius of Convergence

Prof. JLF King

20: PS Uniqueness Thm. Imagine power-series

F(z) = ZZOZO ay [z — P|"
G(z) = ZZOZO b, [z — P|"
where B = BoC(&) N BoC(b) is non-void. Sup-

pose there is a set Y C B st. F|y =G|y, and Y
has a cluster point, )y, in B. Then a =b, so

F=g. O

and

Remark. It does not suffice for Y to have a cluster-
point on the boundary of B: Distinct functions
F(z) = sin(-) and G := —F have Taylor series
with RoC = 7. Yet

Fyk) =0=G(yx),
where 1, =7+ ﬁ O]

for each posint k,

Proof of (20). Subracting PSes gives us a PS
f(z) = ZZOZO Cp |z — P]"

so that f],, = 0, making our goal.

For each g € B := BoC(C), let U(q) denote the
largest centered-at-q open ball that fits inside B.
By the New-center thm, the Taylor-series for f,
centered at ¢, converges to f on all of U(q).

Pick a Y-cluster-point Qg € B. By (19), f is
identically zero on U(Qy).

On the line-segment running between )y and P,
we can pick a (finite) list of points

QO?QM . '7QK717QK =P

such that each @ € U(Qk-1). Arguing induc-
tively, since f is identically zero on U(Q_1), the
the Taylor-series at (J; has all-zero coeffs. This
therefore holds at P. So ¢ = (0,0,0,...). ¢

21: Coro. Suppose F and G are analytic functions
on some connected open set V C C. If

{zeVI[F(z)=6(2)}
has a cluster point in V', then F = G. O
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Abel’s theorem
We state this for a PS centered at @ € C.

22: Abel’'s thm. With e, €C, consider power-series

fz) =3 jen [z -Q"

with RoC RoC € (0,00), as well as a point 2

on the circle-of-convergence, |zy — Q)| = RoC. If
f(20) is finite, then
lim f(t20+[1-11Q) = fl=0).

Le, f is continuous along radial lines out to points-

of-convergence on the boundary of BoC. O
Reduction. WLOG @ = 0. WLOG RoC =1 and
20 = 1. So

22a: flz) = ZZO:O e, "

with RoC(€) = 1, and >_°° , e, finite. Subtract a
constant from e so that, WLOG,

defznd:ef

22b: 0 = hm 1S,

gth

where s, =37, 10 g€, is the {*-partial-sum.

Having fixed >0, we will show

[f(z)| < 2e,

for a posreal <1 that we will produce. O

Ve e [5,1):

Abel’s theorem
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Pf. Consider points x € J := [0,1). Limit (22b)
says we can take L so large that

Ve>L: s < €.

’ Z?Lo:() Sp+L z". So

‘[1 — 1z -Zs@xg‘ < oV [l—a]) ea”
(=L n=0

= zl.¢ < e,

And 322, s, 2' equals 2"

since |z| < 1. Let’s summarize.

ZS@ZL‘

29¢: Vx € J: ‘1—90
Le[L .. 00)

Defining . Wanting [1 — 8] - Yo 1)lse] <,
simply fix a <1 sufficiently close to 1. Thus

22d:  Vx € [8,1): ‘1—.7: > seat

¢€[0.. L)

Absolute convergence. At a point z € J, se-

ries (22a) and 7%, 2/ = - are each absolutely
convergent. So we can multiply the series and re-

group to conclude:
L f) = [il-xﬂ} [ o]
:Z Zl ek]gnOt ZS@Z‘

=0 “j+k=t

For each = € [,1), then, (22d) and (22c) give

|If(z)] = “1_'73]'22055#’ < ec4+e. ¢
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