

T1: Show no work.

Total: _____ 150pts

15 15 a Number $[\mathbf{i} + \sqrt{3}]^{70} = x + \mathbf{i}y$, for real

numbers $x = \text{_____}$ and $y = \text{_____}$.

[Multiplying complexes multiplies their moduli (absolute-values), and adds their angles.]

10 10 10 0 b A particular polynomial $p=p(t)$ satisfying

$$*: \quad p' + 2p = 6t^2 + 8t + 1$$

$$\text{is } p(t) = \text{_____} \cdot t^2 + \text{_____} \cdot t + \text{_____}.$$

The general soln has form $y_\alpha(t) = \alpha e^{Mt} + p(t)$, where $M = \text{_____}$. [Put correct numbers in the four blanks.]

10 10 10 c A soln (use PolyExp) to

$$y'' + y = 2t^2 e^{-t} \text{ is } y(t) = \text{_____}.$$

6 6 6 6 d Operators $\mathbf{V}, \mathbf{P}, \mathbf{Q}, \mathbf{R}, \mathbf{S}$ map from $\mathbf{C}^\infty \rightarrow \mathbf{C}^\infty$, and \mathbf{V} is linear. The other maps are

$$\mathbf{P}(f) := [t \mapsto f(t) + 3], \quad \mathbf{Q}(f) := [t \mapsto f(t + 3)],$$

$$\mathbf{R}(f) := [t \mapsto f(f(t))], \quad \mathbf{S}(f) := \mathbf{V}(\mathbf{V}(f)),$$

Then... \mathbf{P} is linear: $\mathcal{T} F$. \mathbf{Q} is linear: $\mathcal{T} F$.

\mathbf{R} is linear: $\mathcal{T} F$. \mathbf{S} is linear: $\mathcal{T} F$.

5 5 5 5 5 e Let $U := 3 - 2\mathbf{i}$ and $W := 4 + \mathbf{i}$. The gen.soln to a CCLDE is $\boxed{y_{\alpha,\beta}(t) = \alpha \cdot e^{Ut} + \beta \cdot e^{Wt}}$. The CCLDE that every such $y()$ satisfies is

$$= 0.$$

Fill-in the blank with the appropriate sum of derivatives-of- y times various numbers, which may be complex.]

f *"I have neither requested nor received help on this exam other than from my professor."*