

T1: *Show no work.*

a

Prof. King thinks that submitting a ROBERT LONG PRIZE ESSAY [typically 2 prizes, \$500 total] is a *really good idea*, and the due date for the emailed-PDF is typically mid-March. Circle:

Yes

True

Résumé material!

b

Bacteria with birth-multiplier $B :: \frac{1}{\text{min}}$ are in a petri dish with carrying capacity $C :: \text{oz}$. The population, $p(t) :: \text{oz}$, satisfies the Logistic DE.

The DE is

.....

For *Hysteria* bacteria, $B = \frac{1}{\text{min}}$. This petri dish has $C=16\text{oz}$, with initial population $p_0 = 2\text{oz}$. The time when *Hysteria* has reached half the carrying capacity

is $\text{min} \approx \text{min}$.

.....

[NB: You may use `exp()` and `log()` to express your answer.]

 Fnc $y_{\alpha,\beta}(t) = \alpha e^{At} + \beta e^{Bt} + P \cdot \sin(t) + Q \cdot \cos(t)$

is the general soln to

*: $3y'' + 4y' + y = \cos(t)$, with numbers

$A = \underline{\dots}$, $B = \underline{\dots}$, $P = \underline{\dots}$, $Q = \underline{\dots}$.

Also, the *constants* on LhS(*) are 3, 4, 1. With the DE describing the position of a spring, the *constant* corresponding to Hooke's constant is $\underline{\dots}$.

d Operators V, P, Q, R, S map from $C^\infty \rightarrow C^\infty$, and V is linear. The other maps are

$$\begin{aligned} P(f) &:= [t \mapsto f(t) + 3], & Q(f) &:= [t \mapsto f(t + 3)], \\ R(f) &:= [t \mapsto f(f(t))], & S(f) &:= V(V(f)), \end{aligned}$$

Then ... P is linear: $\mathcal{T} F$. Q is linear: $\mathcal{T} F$.
 R is linear: $\mathcal{T} F$. S is linear: $\mathcal{T} F$.

e With $v := \exp(-2 + 5i)$, then $|v| = \underline{\dots \dots \dots}$.

This $|v|$ lies in circle the correct interval

$$[0, \frac{1}{2}), \quad [\frac{1}{2}, 1), \quad [1, 2), \quad [2, 4), \quad [4, 8), \quad [8, \infty).$$

T2: Show no work

i A tank initially has 80gal of salinity $2\frac{\text{lb}}{\text{gal}}$ brine. Pipe-1 feeds the tank, at rate $3\frac{\text{gal}}{\text{min}}$, with salinity $1\frac{\text{lb}}{\text{gal}}$ brine. Pipe-2 feeds at $2\frac{\text{gal}}{\text{min}}$ with salinity $2\frac{\text{lb}}{\text{gal}}$. The tank discharges brine at $9\frac{\text{gal}}{\text{min}}$. Until the tank empties, it holds $W(t)=\left[\text{.....}\right]\text{gal}$; it empties in min.

The amount, $y(t)$, of lb of salt in the tank at time t , satisfies FOLDE $\frac{dy}{dt} + C(t) \cdot y = G(t)$, where

$$C(t)=\text{.....} \quad \text{and} \quad G(t)=\text{.....}$$

ii

A *critically-damped* unforced spring has DE

** $My'' + \mathbf{B}y' + \mathbf{K}y = 0 \frac{\text{kg}\cdot\text{m}}{\text{sec}^2}$, where
 $M := 3\text{kg}$, and the Hooke's constant is $\mathbf{K} := 75 \frac{\text{kg}}{\text{sec}^2}$.

The damping constant $\mathbf{B} =$.

The *general soln* to critically-damped (*) is

$$y(t) = \left[\alpha \cdot \text{_____} + \beta \cdot \text{_____} \right] \text{m.}$$

Here, $\alpha, \beta \in \mathbb{R}$, dimensionless. (The above blanks above have units & numbers in various places; the bracketed quantity is dimensionless. Is $\exp(?)$ is more convenient than $e^?$ notation?) The specific soln with $y(0\text{sec}) = 0\text{m}$ and $y'(0\text{sec}) = 2 \frac{\text{m}}{\text{sec}}$ has

$\alpha =$, $\beta =$.

T1: 115pts

T2: 70pts

Total: 185pts