

Welcome. Write **DNE** in a blank if the described object does not exist or if the indicated operation cannot be performed. Write expressions **unambiguously** e.g., “ $1/a+b$ ” should be bracketed either $[1/a]+b$ or $1/[a+b]$. (Be careful with negative signs!)

T1: Show no work.

a A *minimum* requirement for an LOR (letter-of-recommendation) from Prof. K is two courses. Circle:

Yes True Darn tootin’!

b Fnc $y_{\alpha,\beta}(t) = \alpha e^{At} + \beta e^{Bt} + P \cdot \sin(t) + Q \cdot \cos(t)$ is the general soln to

*: $3y'' + 5y' + y = \cos(t)$, with numbers

$A = \text{_____}$, $B = \text{_____}$, $P = \text{_____}$, $Q = \text{_____}$.

Also, the *constants* on LhS(*) are 3, 5, 1. With the DE describing the position of a spring, the *constant* corresponding to Hooke’s constant is _____ .

c DE $[2x + 8]y \cdot \frac{dy}{dx} + 4y^2 = 0$ is not, alas, *exact*. Happily, multiplying both sides by (non-constant) fnc

$V(y) = \text{_____}$ gives a *new* DE which is exact.

Solving the exact-DE, every soln $y=y(x)$ satisfies $F(x, y(x)) = \alpha$, for some constant α , where

$F(x, y) = \text{_____}$.

d Let $U := 3 - 2i$ and $W := 4 + i$. The gen.soln to a CCLDE is $y_{\alpha,\beta}(t) = \alpha \cdot e^{Ut} + \beta \cdot e^{Wt}$. The CCLDE that every such $y()$ satisfies is

$= 0$.

[Hint: Fill-in the blank with the appropriate sum of derivatives-of- y times various constants.]

e A *critically-damped* unforced spring has DE

*: $\mathbf{M}y'' + \mathbf{B}y' + \mathbf{K}y = 0 \frac{\text{kg}\cdot\text{m}}{\text{sec}^2}$, where $\mathbf{M} := 3\text{kg}$, and the Hooke’s constant is $\mathbf{K} := 75 \frac{\text{kg}}{\text{sec}^2}$.

The damping constant $\mathbf{B} = \text{_____}$.

The *general soln* to critically-damped (*) is

$$y(t) = \left[\alpha \cdot \text{_____} + \beta \cdot \text{_____} \right] \text{m}.$$

Here, $\alpha, \beta \in \mathbb{C}$. (The 3 blanks will have units & numbers in various places. Maybe $\exp(\text{?})$ is more convenient than $e^{\text{?}}$ notation.) The *specific* soln with $y(0\text{sec}) = 0\text{m}$

and $y'(0\text{sec}) = 2 \frac{\text{m}}{\text{sec}}$ has $\alpha = \text{_____}$, $\beta = \text{_____}$.

T2: Show no work.

f A tank initially holds 80gal of $2 \frac{\text{lb}}{\text{gal}}$ brine. Pipe-1 feeds the tank, at rate $3 \frac{\text{gal}}{\text{min}}$, with brine of time-varying salinity $\left[\frac{t}{\text{min}} \right]^3 \frac{\text{lb}}{\text{gal}}$. Pipe-2 feeds the tank at $2 \frac{\text{gal}}{\text{min}}$, brine of salinity $e^{t/\text{min}} \frac{\text{lb}}{\text{gal}}$. The tank discharges brine at rate $9 \frac{\text{gal}}{\text{min}}$. Until the tank empties, the tank holds $W(t) = \left[\text{_____} \right] \text{gal}$; it empties in _____ min.

Finally, $y(t)$, the number of pounds of salt in the tank at time t , satisfies FOLDE $\frac{dy}{dt} + F(t) \cdot y = H(t)$,

where $F(t) = \text{_____}$.

and $H(t) = \text{_____}$.

T1: _____ 130pts

T2: _____ 40pts

Total: _____ 170pts