

Welcome. Write **DNE** in a blank if the described object does not exist or if the indicated operation cannot be performed.

Use “ $f(x)$ notation” when writing fncs; in particular, for trig and log fncs. E.g, write “ $\sin(x)$ ” rather than the horrible $\sin x$ or $[\sin x]$.

T1: Show no work.

a Which is *optional*? *Writing-in-sentences.*
Writing-t-different-from-+. *Writing-LARGE.* Um...

b *Hysteria* bacteria, with birth-multiplier $\mathbf{B} := \frac{1}{\text{min}}$, are in a petri dish with carrying capacity $\mathbf{C} := \text{oz}$. The population, $p(t) := \text{oz}$, satisfies the Logistic DE.

The DE is

.....

For *Hysteria*, $\mathbf{B} = \frac{1}{\text{min}}^{\frac{1}{5}}$. This petri dish has $\mathbf{C} = 16\text{oz}$, with initial population $\mathbf{p}_0 = 2\text{oz}$. The time when *Hysteria* has reached half the carrying capacity

is min \approx min.

[NB: You may use `exp()` and `log()` to express your answer.]

c The simplest soln to $y'' + 2y' + y = [t^2 + 1]/e^t$ is $y(t) =$

d $[x^2 \circledast e^{3x}] =$

e DiffOperators **P, Q, R, S** are defined as

$$\begin{aligned}\mathbf{P}(f) &:= f(3) \cdot f', & \mathbf{Q}(f) &:= \cos(3) \cdot f^{(3)}, \\ \mathbf{R}(f) &:= [\cos(3) \cdot f] + f'', & \mathbf{S}(f) &:= \cos(3) + [3f'].\end{aligned}$$

Then... **P** is linear: $\mathcal{T} F$. **Q** is linear: $\mathcal{T} F$.
R is linear: $\mathcal{T} F$. **S** is linear: $\mathcal{T} F$.

OYOP: In grammatical English **sentences**, write your essay on every **third** line (usually), so that I can easily write between the lines.

T2: Brine with salinity $S := 5 \frac{\text{lb}}{\text{gal}}$ flows at $R := 2 \frac{\text{gal}}{\text{min}}$ into Tank-1, which discharges at rate R into Tank-2, which discharges at R . Each contains $U := 50\text{gal}$ of brine; initial-salinity $1 \frac{\text{lb}}{\text{gal}}$ for Tank-1, and initial-salinity $2 \frac{\text{lb}}{\text{gal}}$ for Tank-2.

OYOP, draw a large, **carefully labelled** picture of the ocean+tanks.

Derive the DE for $\sigma_1(t)$, the salinity in Tank-1; it

is

.....

ITOf $\sigma_1(t)$, derive the DE for $\sigma_2(t)$, the salinity in Tank-2:

It is

.....

Solve the first DE, getting

$\sigma_1(t) =$

.....

End of T-Class

T1: _____ 110pts

T2: _____ 85pts

Total: _____ 195pts