

Symmetric Polynomials: Polys

Jonathan L.F. King

University of Florida, Gainesville FL 32611-2082, USA
squash@ufl.edu

Webpage <http://squash.1gainesville.com/>

14 October, 2017 (at 11:56)

ABSTRACT: Proves the Fund. Thm of Symmetric Polynomials, that each sympoly is determined by the *elementary symmetric polynomials*; the *esps*. Indeed, each N -variable sympoly is a polynomial in the N -variable esps.

Along the way, this note provides an introduction to multinomial coefficients.

(See "[~/Elisp/SymPoly/symmetricpoly.el](#) for code.)

Review of multinomial coefficients. For a natnum n , use " $n!$ " to mean " n factorial"; the product of all posints $\leq n$. So $3! = 3 \cdot 2 \cdot 1 = 6$ and $5! = 120$. Also $0! = 1$ and $1! = 1$.

The **binomial coefficient** $\binom{7}{3}$, read "7 choose 3", means *the number of ways of choosing 3 objects from 7 distinguishable objects*. If we think of putting these objects in our left pocket, and putting the remaining 4 objects in our right pocket, then we write the coefficient as $\binom{7}{3,4}$. [Read as "7 choose 3-comma-4."] Note that $\binom{7}{0} = \binom{7}{0,7} = 1$. Observe that $\binom{N+1}{k+1} = \binom{N}{k} + \binom{N}{k+1}$. Finally, the Binomial theorem says

$$\text{B1: } [x+y]^N = \sum_{j+k=N} \binom{N}{j,k} \cdot x^j y^k,$$

where (j,k) ranges over all *ordered* pairs of natural numbers with sum N .

In general, for natnums $N = k_1 + \dots + k_P$, the **multinomial coefficient** $\binom{N}{k_1, k_2, \dots, k_P}$ is the number of ways of partitioning N objects, by putting k_1 objects in pocket-one, k_2 objects in pocket-two, ... putting k_j objects in the j^{th} pocket. Easily

$$\text{B2: } \binom{N}{k_1, k_2, \dots, k_P} = \frac{N!}{k_1! \cdot k_2! \cdot \dots \cdot k_P!}.$$

And $[x_1 + \dots + x_P]^N$ indeed equals the sum of terms

$$\binom{N}{k_1, \dots, k_P} \cdot x_1^{k_1} \cdot x_2^{k_2} \cdots x_P^{k_P},$$

taken over all natnum-tuples $\vec{k} = (k_1, \dots, k_P)$ that sum to N .

Preliminaries. Fix a posint N and let "perm" mean a permutation of $[1..N]$. Given an N -variable poly $Y(z_1, \dots, z_N)$ and a perm π , say that Y is π -*invariant* if

$$Y(z_1, \dots, z_N) = Y(z_{\pi(1)}, z_{\pi(2)}, \dots, z_{\pi(N)}),$$

where the equality is "as polynomials"; that is, *corresponding coefficients are equal*. Say that Y is a "**symmetric polynomial** in z_1, \dots, z_N " if Y is invariant¹ under each of the $N!$ many perms. I will use **sympoly** to abbreviate "symmetric polynomial".

1: Modification. For notational convenience, henceforth assume that sympolys have no constant term. This does not affect the below ESP Theorem, (3), since the constant of $Y()$ would simply become the constant term of $F()$. \square

ESP. In the sequel, use \vec{z} to denote z_1, \dots, z_N or (z_1, \dots, z_N) as appropriate.

For $N=3$, there are three especially simple sympolys:

$$\begin{aligned} \sigma_1(\vec{z}) &:= z_1 + z_2 + z_3; \\ \sigma_2(\vec{z}) &:= z_1 z_2 + z_1 z_3 + z_2 z_3; \\ \sigma_3(\vec{z}) &:= z_1 \cdot z_2 \cdot z_3. \end{aligned}$$

For a general N and $j \in [1..N]$, let

$$\text{2: } \sigma_{j,N}(\vec{z}) := \sum_S \left[\prod_{j \in S} z_j \right],$$

where S , here, ranges over the cardinality- j subsets of $[1..N]$. Henceforth, the subscript " N " will be implicit and I will write σ_j in place of $\sigma_{j,N}$.

These sympolys $\sigma_1, \dots, \sigma_N$ are called the **elementary symmetric polynomials**, or **esps**, for short.

The goal of this note is the following result.

¹Consider the polynomial $Y(x, y) := x^2 + y$ as a poly over the integers mod-2. Then Y is certainly a symmetric *function*, but it is not a "symmetric polynomial" because its coefficient structure is not invariant under exchanging x and y .

3: Fundamental ESP Theorem. Fix an N -variable \mathbb{Z} -sympoly Y . Then there is a unique N -variable \mathbb{Z} -poly F such that

$$3': \quad F(\sigma_1(\vec{z}), \sigma_2(\vec{z}), \dots, \sigma_N(\vec{z})) = Y(\vec{z}).$$

Additionally, $\text{Deg}(F) \leq \text{Deg}(Y)$. ◊

Convention. Typically I will let σ_j also mean $\sigma_j(\vec{z})$. In particular, I will usually write $\text{LhS}(3')$ as $F(\sigma_1, \dots, \sigma_N)$ or just as $F(\vec{\sigma})$.

When I use a specific value of N in an example, I may use variable names a, b, \dots in place of z_1, z_2, \dots □

Remark. With alternating signs, the coefficients of a monic 1-var poly $g()$ appear as the esps of its zeros \vec{z} (also called “roots” of g). I.e, consider

$$g(X) := [X - z_1][X - z_2] \cdots [X - z_N].$$

Multiplying this out, $g(X)$ equals

$$\begin{aligned} X^N - \sigma_1(\vec{z}) \cdot X^{N-1} + \sigma_2(\vec{z}) \cdot X^{N-2} \\ - \sigma_3(\vec{z}) \cdot X^{N-3} + \cdots + [-1]^N \sigma_N(\vec{z}) \cdot X^0. \end{aligned}$$

Consequently, the ESP Theorem has the handy corollary that each symmetric polynomial of the roots of $g()$ is some nice polynomial in the *coefficients* of g .

As an application, the “**discriminant** of g ” is

$$4: \quad \text{Discr}(g) := \prod_{1 \leq j < k \leq N} [z_k - z_j]^2.$$

Letting B be the binomial coeff $\binom{N}{2}$, the RhS equals

$$[-1]^B \cdot \prod_{\substack{j \neq k \\ j, k \in [1..N]}} [z_k - z_j],$$

so we see that $\text{Discr}(g)$ does *not* depend on some arbitrary ordering of the roots. The ESP Thm tells us that we can compute the discriminant of g from its coefficients. □

Tools

Here are the utensils that we will use to obtain the ESP Theorem.

Dictionary order. We define *dictionary order*, \prec , on pairs of N -tuples $\vec{v} = (v_1, \dots, v_N)$ and \vec{w} , each a tuple of natnums. Say that $\vec{v} \prec \vec{w}$ if:

There exists an index $j \in [1..N]$ with $v_j \neq w_j$. For the smallest such j , furthermore, $v_j < w_j$.

Easily, dictionary order² is *transitive* ($\vec{u} \prec \vec{v}$ and $\vec{v} \prec \vec{w}$ together imply that $\vec{u} \prec \vec{w}$). And dictionary order is a *total* order. That is, for each pair \vec{v} and \vec{w} , one of them is \preccurlyeq the other one.

Profiles. A sympoly can be written more concisely than just listing all of its terms. Consider the $N=3$ sympoly $Y()$ with the smallest number of terms and possessing term $a^9 \cdot b^4 \cdot c$. Necessarily $Y(a, b, c)$ equals this sum of six terms:

$$a^9b^4c + a^9bc^4 + a^4b^9c + a^4bc^9 + ab^9c^4 + ab^4c^9$$

What we have done is take the exponent triple $(9, 4, 1)$ and put it over (a, b, c) in all possible ways.

In general, an exponent N -tuple, α , can always be put in decreasing (well...non-increasing, actually) order as $\alpha = (h_1, \dots, h_N)$ with $h_1 \geq \dots \geq h_N$, with each of the exponents a natnum. Furthermore, courtesy (1), necessarily $h_1 \geq 1$. We take this as our definition of a *profile*.

Let’s refer to the N natnums h_n as *heights*. They are indeed shown as such in Figure 9, below. Let $\text{Deg}(\alpha)$ denote the sum $h_1 + \dots + h_N$.

The Canonical Rep. Let $S^\alpha(\vec{z})$ be the sympoly having the fewest terms and having term $z_1^{h_1} \cdot z_2^{h_2} \cdots z_N^{h_N}$. Letting π , below, range over all permutations of $[1..N]$, then,

$$5: \quad S^\alpha(\vec{z}) := \frac{1}{B} \cdot \sum_{\pi} z_1^{h_{\pi(1)}} \cdot z_2^{h_{\pi(2)}} \cdots z_N^{h_{\pi(N)}},$$

²Also known as *lexicographic order*.

where we need to define the posint B appropriately so that, after combining like-terms, each term will have a coefficient of 1.

To compute B , we count the number of height-repetitions in our N -tuple α . Let v_1, \dots, v_P be the values of α , and write

$$\alpha = \left(\underbrace{v_1, \dots, v_1}_{d_1}, \underbrace{v_2, \dots, v_2}_{d_2}, \dots, \underbrace{v_P, \dots, v_P}_{d_P} \right)$$

with strict inequality $v_1 > \dots > v_P$. (So v_1 equals h_1 and $v_P = h_N$. There are d_j many copies of the j^{th} value.) It is straightforward to show that B equals the product $[d_1!] \cdot [d_2!] \cdots [d_P!]$. Thus S^α has a multinomial-coeff number of terms, namely (??).

The upshot is this: Using dictionary order on profiles, an arbitrary sympoly $Y()$ has a **canonical representation** (abbr. *canon-rep*)

$$6: Y = \sum_{k=1}^K q_k S^{\alpha_k}, \quad \text{where } \alpha_1 \succ \alpha_2 \succ \dots \succ \alpha_K \text{ and each } q_k \text{ is a non-zero integer.}$$

The natnum K , coefficients q_k , and profile sequence $\alpha_1, \dots, \alpha_K$ are uniquely determined.

Establishing the ESP Theorem

An N -profile can be viewed as in Figure 9. It determines a decreasing tuple of widths $[w_1, \dots, w_L]$. Notice that w_L will always be the number of non-zero heights. Thus necessarily $L \leq N$, with equality IFF α is the profile of an ESP. **Whoa! Did I mean iff $h_1 = 1$? I.e $L = 1$?**

The key step in proving the theorem is this lemma.

7: Width Lemma. Fix a profile α and let $w_1 \leq \dots \leq w_L$ be its tuple of widths. Then there is a posint J so that the esp-product

$$\sigma_{w_1} \cdot \sigma_{w_2} \cdots \sigma_{w_L}, \quad (\text{evidently a sympoly})$$

has canonical representation

$$8: \quad \sigma_{w_1} \cdot \sigma_{w_2} \cdots \sigma_{w_L} = S^\alpha + \sum_{j=2}^J q_j S^{\beta_j},$$

for some coefficients q_j and profiles $\beta_J \prec \beta_{J-1} \prec \dots \prec \beta_2 \prec \alpha$. In other words, the original profile α is the highest profile in the esp-product (8), and it occurs with a coefficient of 1. ◇

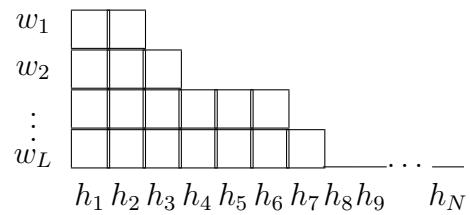


FIG. 9: This shows a profile α having heights $h_1 \geq \dots \geq h_N$. In this example, heights h_8 through h_N are zero. The picture also defines L many widths $w_1 \leq \dots \leq w_L$, where $L := h_1$. In this example $L = 4$ and the widths are $w_1 = 2$, $w_2 = 3$, $w_3 = 6$ and $w_4 = 7$.

10: Example. Let $\alpha := (2, 1, 1, 0)$; so $N = 4$. The width tuple for α is $[1, 3]$, hence the corresponding esp-product is $\sigma_1 \cdot \sigma_3$, i.e, is

$$*: \quad [a + b + c + d][abc + abd + acd + bcd].$$

The only $\text{Deg} = 4$ profile which is “dictionaries” below α is $\beta := (1, 1, 1, 1)$. Collecting terms in (*) gives that

$$8': \quad \sigma_1 \cdot \sigma_3 = S^\alpha + 4S^\beta.$$

So (8') is (8) with $J = 2$ and $q_2 = 4$.

There is an alternative way to derive (8'), without multiplying out. Courtesy the lemma, we will get one copy of α and some unknown number, q , of copies of β . But the repetition tuple for α is $(1, 2, 1)$, so S^α has $\binom{4}{1, 2, 1} = 12$ terms. Thus 12 of the $16 = 4 \cdot 4$ products of (*) will be terms of the single copy of S^α .

In consequence, the remaining $16 - 12 = 4$ products, when divided by the number of terms in S^β ,

must equal q . Since S^β has only a single term, $abcd$, we conclude that $q = 4/1$; this is also what we saw by multiplying out. \square

Sketch of proof of the Width Lemma. There is no true loss of generality in assuming that $N = 5$; now I can write the variables as a, \dots, e rather than z_1, \dots, z_5 . Referring to (6), let

$$11: \quad p \cdot S^{\alpha'} + \sum_{k=2}^K q_k S^{\beta_k}$$

be the canon-rep of the esp-product $\sigma_{w_1} \cdot \sigma_{w_2} \cdots \sigma_{w_L}$.

Our goal is to show that α' equals α and that $p = 1$. It is implicit in the argument below (Exercise!) that no profile dictionary greater than α can occur in (11). So, I will content myself with showing that the coeff of α in (11) is 1.

The coeff of α is simply the coeff of the term

$$**: \quad a^{h_1} b^{h_2} c^{h_3} d^{h_4} e^{h_5}$$

in esp-product $\sigma_{w_1} \cdots \sigma_{w_L}$. In each of the L many esps, the degree of “ a ” is 1. Thus the highest degree of “ a ” in the esp-product is L , which indeed equals h_1 . How many of the variables a, b, \dots can have this maximal exponent L ? —at most w_1 of them. So the only way to get term $(**)$ in the esp-product is if the term used from esp σ_{w_1} was in fact the term $abcde$.

Rest of proof is missing,
17Sep2001. \spadesuit

An implementation

The algorithm will manipulate lists OTForm

$$12: \quad y = \langle (\alpha_1, c_1), (\alpha_2, c_2), \dots, (\alpha_K, c_K) \rangle,$$

where $\alpha_1 \succ \dots \succ \alpha_K$ are profiles and the coeffs c_k are non-zero integers.

Given a second such list

$$x = \langle (\beta_1, q_1), \dots, (\beta_K, q_K) \rangle,$$

let $\text{merge-sort}(y, x)$ be the interwoven list of pairs, sorted by \succ . Furthermore, like-terms are combined and terms with coeff zero are dropped. For example, suppose that $\alpha \succ \beta \succ \gamma \succ \delta \succ \varepsilon$ are profiles and our lists are

$$\begin{aligned} y &:= \langle (\beta, 20), (\gamma, -30), (\varepsilon, 40) \rangle; \\ x &:= \langle (\alpha, 5), (\beta, 6), (\gamma, 30), (\delta, 7), (\varepsilon, 8) \rangle. \end{aligned}$$

Then $\text{merge-sort}(y, x)$ equals

$$\langle (\alpha, 5), (\beta, 26), (\delta, 7), (\varepsilon, 48) \rangle.$$

The setup. The given sympoly has canonical representation

$$\text{IN:} \quad Y = \sum_{k=1}^K c_k S^{\alpha_k}.$$

The desired output poly F has form

$$\text{OUT:} \quad F = \sum_{j=1}^J d_j \Upsilon_j,$$

where each Υ_j is OTForm $\sigma_{w_1} \cdots \sigma_{w_L}$ for numbers L and $w_1 \leq \dots \leq w_L$ which depend on j .

An algorithm

The algorithm repeats *Steps 1,2,3* below until list y becomes empty. The value of list f then describes the desired poly F .

Initialization: Init y to list (12) from (IN). Init f to the empty list $\langle \rangle$.

Step 1: If the current y is empty then STOP; the current value of f describes (OUT).

Otherwise, *pop-off* of y its leftmost pair and call this pair (α, c) . Compute L and widths $w_1 \leq \dots \leq w_L$ for profile α .

Step 2: Courtesy the Width Lemma, we can write the product $\sigma_{w_1} \cdots \sigma_{w_L}$ as

$$\langle (\alpha, 1), (\beta_2, q_2), \dots, (\beta_J, q_J) \rangle$$

where $\alpha \succ \beta_2 \succ \dots \succ \beta_J$ are profiles.

Push pair $([w_1, w_2, \dots, w_L], c)$ onto f .

Step 3: Define a list

$$x := \langle (\beta_2, -cq_2), (\beta_3, -cq_3), \dots, (\beta_J, -cq_J) \rangle;$$

note the negated coefficients. Now assign

$$y := \text{merge-sort}(y, x).$$

(Let K denote the number of pairs in the old y . Then the number of pairs in the new y may be as much as $K + J - 2$. But the maximum profile in the new y is strictly \prec the maximum profile in old y . So eventually y will become exhausted.)

Efficiency considerations

An expensive part is *Step 2*, computing the canon-rep of the esp-product.

To be written.

Filename: Problems/Polynomials/symmetric_polys.latex
As of: Wednesday 15Feb2006. Typeset: 14Oct2017 at 11:56.