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ABSTRACT: Proves the Fund. Thm of Symmetric Polyno-
mials, that each sympoly is determined by the elemen-
tary symmetric polynomials; the esps. Indeed, each N-
variable sympoly is a polynomial in the N-variable esps.

Along the way, this note provides an introduction to
multinomial coefficients.

(See "~/Elisp/SymPoly/symmetricpoly.el for code.)

Review of multinomial coefficients. For a
natnum n, use “n!” to mean “n factorial”; the product
of all posints <n. So3!=3-2-1=6 and 5! = 120. Also
0!=1 and 1! =1.

The binomial coefficient (), read “7 choose 37,
means the number of ways of choosing 3 objects from 7 dis-
tinguishable objects. If we think of putting these objects in
our left pocket, and putting the remaining 4 objects in our
right pocket, then we write the coefficient as (374). [Read

as “7 choose 3—comma—4.”] Note that (g) = (077) = 1. Observe

that (]]Z:f) = (JZ) + (kJL) Finally, the Binomial theorem
says

B1: [z +y]N =

Z (]J\;) 'xjyk ’

j+k=N

where (4, k) ranges over all ordered pairs of natural num-
bers with sum N.

In general, for natnums N =k + ... + kp, the multi-

nomial coefficient (, kj k) is the number of ways of

partitioning IV objects, by putting ki objects in pocket-
one, ky objects in pocket-two, ...putting k; objects in
the j*® pocket. Easily

N N!
B2: = .
(k17k27...,kp> k! ky!-... - kp!

And [z1 + -+ + zp]" indeed equals the sum of terms

N R R Y )
(kl,“.,k}p) Ty -T2 rp

taken over all natnum-tuples k=(ky,...,kp) that sum
to V.
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Preliminaries. Fix a posint N and let “perm”
mean a permutation of [1..N]. Given an N-
variable poly Y(z1,...,2zy) and a perm m, say
that Y is m-invariant if

Y(Zl,...,ZN) = Y(Zﬁ(l),zw(g),...,ZF(N)),

where the equality is “as polynomials”; that is,
corresponding coefficients are equal. Say that Y is
a “symmetric polynomial in z1,...,zy" if Y is
invariant”! under each of the N! many perms. I
will use sympoly to abbreviate “symmetric poly-
nomial”.

1: Modification. For notational convenience,
henceforth assume that sympolys have no con-
stant term. This does not affect the below ESP
Theorem, (3), since the constant of Y() would sim-

ply become the constant term of F'(). O
ESP. In the sequel, use Z to denote z1,..., 2y
or (z1,...,2y) as appropriate.

For N=3, there are three especially simple sym-
polys:

o1(2) = z1+ 22+ 23 ;
0'2(5) = 2129 + 2123 + 2223 ;
0'3(2) = Z1°Z29°"Z23 .

For a general N and j € [1.. N], let

2: oin(Z) = ZS:[H zj] :

jES

where S, here, ranges over the cardinality-j sub-
sets of [1.. N]. Henceforth, the subscript “N” will
be implicit and I will write o; in place of o, n.

These sympolys o4, ...,0n are called the ele-
mentary symmetric polynomsials, or esps, for
short.

The goal of this note is the following result.

“!Consider the polynomial Y (z,y) := 2% + y as a poly
over the integers mod-2. Then Y is certainly a symmetric
function, but it is not a “symmetric polynomial” because
its coefficient structure is not invariant under exchanging
x and y.
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3: Fundamental ESP Theorem. Fix an N-variable
Z-sympoly Y. Then there is a unique N-variable
Z-poly F' such that

3: F(0u(2),00(3),...,on(2) = Y(2).

Additionally, Deg(F) < Deg(Y). O

Convention. — Typically T will let o; also mean
0;(Z). In particular, I will usually write LhS(3’)

as F(o1,...,0n) or just as F(&).

When I use a specific value of N in an exam-
ple, I may use variable names a, b, ... in place of
21,29, .. ]

Remark. With alternating signs, the coefficients
of a monic 1-var poly g() appear as the esps of its
zeros Z (also called “roots” of g). l.e, consider

g(X) = [X — n][X — 2] - [X — zp].
Multiplying this out, g(X) equals
XN —01(2) - XV oy(2) - X2
—03(2) - XV 4 ) Non(2) - XO.
Consequently, the ESP Theorem has the handy
corollary that each symmetric polynomial of the
roots of ¢() is some nice polynomial in the coeffi-

cients of g.
As an application, the “discriminant of ¢g” is

4: Discr(g) =[]

1<j<k<N

[z — zj]2 )

Letting B be the binomial coeff (g), the RhS
equals

F07 - T e — 2l

J#k
j,ke[l..N]
so we see that Discr(g) does not depend on some
arbitrary ordering of the roots. The ESP Thm tells
us that we can compute the discriminant of g from

its coeflicients. OJ

Tools
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Tools

Here are the utensils that we will use to obtain
the ESP Theorem.

Dictionary order. We define dictionary or-
der, <, on pairs of N-tuples 7 = (v1,...,vy) and
w, each a tuple of natnums.  Say that v < @ if:

There exists an index j € [1..N] with

v; # wj;. For the smallest such j, fur-
thermore, v; < w;.

Easily, dictionary order™? is transitive (i < @ and
¥ < 1 together imply that @ < @). And dictionary
order is a total order. That is, for each pair ' and
w, one of them is < the other one.

Profiles. A sympoly can be written more con-
cisely than just listing all of its terms. Consider
the N=3 sympoly Y () with the smallest number
of terms and possessing term a’ - b* - c. Necessarily
Y (a,b,c) equals this sum of six terms:

a’btc + a’bct + a*vc + a*b® + ab’ct + ab*®

What we have done is take the exponent triple
(9,4,1) and put it over (a,b,c) in all possible
ways.

In general, an exponent N-tuple, a, can always
be put in decreasing (well...non-increasing, actually)
order as a = (hy,...,hy) with hy > ... > hy,
with each of the exponents a natnum. Further-
more, courtesy (1), necessarily hy > 1. We take
this as our definition of a profile.

Let’s refer to the N natnums h, as heights.
They are indeed shown as such in Figure 9, below.
Let Deg(a) denote the sum hy + ...+ hy.

The Canonical Rep. Let S*(Z) be the sym-
poly having the fewest terms and having term
2 gk z]}i,N. Letting 7, below, range over all

permutations of [1.. N], then,

—» hr hy hr
5e Sa(Z) — %221 (1)_2,2 (2)"'ZN<N)7

™

“2 Also known as lexicographic order.
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where we need to define the posint B appropri-
ately so that, after combining like-terms, each
term will have a coefficient of 1.

To compute B, we count the number of height-

repetitions in our N-tuple a. Let vq,...,vp be
the values of a, and write
a = (1)1,...,’01,1)2,...,?}27 ,’Up,...,Up,)
—_———
dq d2 dp
with strict inequality v; > -+ > wvp. (So v

equals hy and vp = hy.
of the ;" value.) It is straightforward to show
that B equals the product [dy!]-[do!]---[dp!].
Thus S has a multinomial-coeff number of terms,
namely (77).

The upshot is this: Using dictionary order on
profiles, an arbitrary sympoly Y() has a canoni-
cal representation (abbr. canon-rep)

There are d; many copies

where a1 = as = ... = ag
and each qi is a non-zero in-
teger.

K
6: Y = quSO"“,
k=1

The natnum K, coefficients qi, and profile se-
quence a, ..., are uniquely determined.

Establishing the ESP Theorem

An N-profile can be viewed as in Figure.
It determines a decreasing tuple of widths
Jwi,...,wr]. Notice that wy will always be the
number of non-zero heights. Thus necessarily
L < N, with equality IFF « is the profile of an
ESP. Did Imeaniff hy =17 I.e L =17

The key step in proving the theorem is this
lemma.

7: Width Lemma. Fix a profile a and let w; <
... < wg, be its tuple of widths. Then there is a
posint J so that the esp-product

(evident]y a sympoly)

Owy " Owy """ Owy, 5

Establishing the ESP Theorem
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has canonical representation

J
8: Ouwn * Ou Oy, = S¥+ > q;5%,

=2

for some coefficients q; and profiles 3; < B3;_; <

.= By < o In other words, the orig-
inal profile o is the highest profile in the esp-
product (8) , and it occurs with a coefficient of 1.0

wy, |
Iy ho b ha hs he hehshy by

F1G. 9: This shows a profile a having heights hy >
... = hy. In this example, heights hg through hy
are zero.  The picture also defines L many widths
w; < ... < wy, where L := hy. In this example
L = 4 and the widths are w1 = 2, wy = 3, w3 = 6
and wy = 7.

10: Ezample. Let a0 == (2,1,1,0); so N = 4. The
width tuple for v is [1, 3], hence the correspond-
ing esp-product is oy - 03, i.e, is

x:  [a+ b+ c+ d][abec + abd + acd + bed] .

The only Deg =4 profile which is “dictionarily” be-
low v is B == (1,1,1,1). Collecting terms in (*)
gives that

] 0103 — S« + 45’3

So (8) is (8) with J =2 and g2 = 4.

There is an alternative way to derive (8'), with-
out multiplying out. Courtesy the lemma, we will
get one copy of a and some unknown number, q,
of copies of 3. But the repetition tuple for a« is
(1,2,1), so S* has (17;1’1):12 terms. Thus 12 of
the 16 = 4 - 4 products of (%) will be terms of the
single copy of S<.

In consequence, the remaining 16—12 = 4 prod-
ucts, when divided by the number of terms in S,
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must equal q. Since SP has only a single term,
abed, we conclude that g = 4/1; this is also what
we saw by multiplying out. 0

Sketch of proof of the Width Lemma. There is no
true loss of generality in assuming that N = 5;
now [ can write the variables as a,...,e rather
than zq,...,z5. Referring to (6), let

K
11: p-SY + 3 ars
k=2

be the canon-rep of the esp-product oy, -
Ty " Oy -

Our goal is to show that o’ equals a and
that p = 1. It is implicit in the argument be-
low (Exercise!) that no profile dictionarily greater
than a can occur in (11). So, I will content myself
with showing that the coeff of v in (11) is 1.

The coeff of ¢ is simply the coeff of the term

Kok a v chs qhaehs

in esp-product o, - - -0y, . In each of the L many
esps, the degree of “a” is 1. Thus the highest
degree of “a” in the esp-product is L, which indeed
equals h;. How many of the variables a, b, ... can
have this maximal exponent L? —at most w; of
them. So the only way to get term (%) in the
esp-product is if the term used from esp o,, was
in fact the term abcde.

Rest of proof is missing,

17Sep2001. ¢

An implementation

The algorithm will manipulate lists OTForm

12: y = <(a1,C1),(027C2)>---a(aK>CK)>7

where a1 = ... = ay are profiles and the coeffs c;,
are non-zero integers.

An algorithm
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Given a second such list

x=((Bra).- - (B and))

let merge-sort(y,x) be the interwoven list of
pairs, sorted by >. Furthermore, like-terms are
combined and terms with coeff zero are dropped.
For example, suppose that a« = 3 > v = & > €
are profiles and our lists are

y = <(Bv 20)’ (’77730)7 (8740)> ;
X .= <(a7 5)7 (/67 6)7 (77 30)7 (57 7)7 (57 8)> :

Then merge-sort(y, x) equals
((,5),(8,26),(8,7), (,48) ).

The setup. The given sympoly has canonical
representation

K

IN: Y = chSo"“ .
k=1

The desired output poly F' has form

J
OUT: F = ZdJT] s
j=1

where each T is OTForm oy, - - - 0, for numbers
L and wy < ... < wy which depend on j.

An algorithm

The algorithm repeats Steps 1,2,3 below until list
y becomes empty. The value of list £ then de-
scribes the desired poly F'.

Initialization: Init y to list (12) from (IN).
Init £ to the empty list ().

Step 1: If the current y is empty then STOP;
the current value of £ describes (OUT).

Otherwise, pop-off of y its leftmost pair and
call this pair (a, c). Compute L and widths w; <
... < wy, for profile a.
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Step 2: Courtesy the Width Lemma, we can
write the product o, --- 0y, as

<(a? 1)7 (/827 q2) SR (BJ‘? qJ)>

where a = B, = ... = (3, are profiles.

Push pair ([wl, wy, ..., wr],c) onto f.

Step 3: Define a list

i (B, (B, ()

note the negated coefficients. Now assign
y = merge-sort(y,x).

(Let K denote the number of pairs in the old y. Then the
number of pairs in the new y may be as much as K+ J —2.
But the maximum profile in the new y is strictly < the
maximum profile in old y. So eventually y will become
exhausted.)

Efficiency considerations

An expensive part is Step 2, computing the canon-
rep of the esp-product.
To be written.
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