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Abstract: Proves the Fund. Thm of Symmetric Polyno-
mials, that each sympoly is determined by the elemen-
tary symmetric polynomials; the esps. Indeed, each N -
variable sympoly is a polynomial in the N -variable esps.

Along the way, this note provides an introduction to
multinomial coefficients.
(See "~/Elisp/SymPoly/symmetricpoly.el for code.)

Review of multinomial coefficients. For a
natnum n, use “n!” to mean “n factorial ” ; the product
of all posints 6n. So 3! = 3 · 2 · 1 = 6 and 5! = 120. Also
0! = 1 and 1! = 1.

The binomial coefficient
(
7
3

)
, read “7 choose 3”,

means the number of ways of choosing 3 objects from 7 dis-
tinguishable objects. If we think of putting these objects in
our left pocket, and putting the remaining 4 objects in our
right pocket, then we write the coefficient as

(
7
3,4

)
. [Read

as “7 choose 3-comma-4.”] Note that
(
7
0

)
=
(

7
0,7

)
= 1. Observe

that
(
N+1
k+1

)
=
(
N
k

)
+
(

N
k+1

)
. Finally, the Binomial theorem

says

[x+ y]N =
∑

j+k=N

(
N
j,k

)
· xjyk ,B1:

where (((j, k))) ranges over all ordered pairs of natural num-
bers with sum N .

In general, for natnums N = k1 + . . .+ kP , the multi-
nomial coefficient

(
N

k1,k2,...,kP

)
is the number of ways of

partitioning N objects, by putting k1 objects in pocket-
one, k2 objects in pocket-two, . . . putting kj objects in
the jth pocket. Easily(

N

k1, k2, . . . , kP

)
=

N !

k1! · k2! · . . . · kP !
.B2:

And [x1 + · · ·+ xP ]
N indeed equals the sum of terms(

N
k1,...,kP

)
· x1

k1 · x2
k2 · · ·xP

kP ,

taken over all natnum-tuples ~k=(((k1, . . . , kP))) that sum
to N .

Preliminaries. Fix a posint N and let “perm”
mean a permutation of [1 .. N ]. Given an N -
variable poly Y (z1, . . . , zN) and a perm π, say
that Y is π-invariant if

Y (z1, . . . , zN) = Y (zπ(1), zπ(2), . . . , zπ(N)) ,

where the equality is “as polynomials” ; that is,
corresponding coefficients are equal. Say that Y is
a “symmetric polynomial in z1, . . . , zN ” if Y is
invariant♥1 under each of the N ! many perms. I
will use sympoly to abbreviate “symmetric poly-
nomial”.

1: Modification. For notational convenience,
henceforth assume that sympolys have no con-
stant term. This does not affect the below ESP
Theorem, (3), since the constant of Y () would sim-
ply become the constant term of F (). �

ESP. In the sequel, use ~z to denote z1, . . . , zN
or (((z1, . . . , zN))) as appropriate.

For N=3, there are three especially simple sym-
polys:

σ1(~z) := z1 + z2 + z3 ;

σ2(~z) := z1z2 + z1z3 + z2z3 ;

σ3(~z) := z1 · z2 · z3 .

For a general N and j ∈ [1 .. N ], let

σj,N(~z) :=
∑
S

[∏
j∈S

zj

]
,2:

where S, here, ranges over the cardinality-j sub-
sets of [1 .. N ]. Henceforth, the subscript “N ” will
be implicit and I will write σj in place of σj,N .

These sympolys σ1, . . . , σN are called the ele-
mentary symmetric polynomials, or esps, for
short.

The goal of this note is the following result.
♥1Consider the polynomial Y (x, y) := x2 + y as a poly

over the integers mod-2. Then Y is certainly a symmetric
function, but it is not a “symmetric polynomial” because
its coefficient structure is not invariant under exchanging
x and y.
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3: Fundamental ESP Theorem. Fix an N -variable
Z-sympoly Y . Then there is a unique N -variable
Z-poly F such that

F
(
σ1(~z), σ2(~z), . . . , σN(~z)

)
= Y (~z) .3′:

Additionally, Deg(F ) 6 Deg(Y ). ♦

Convention. Typically I will let σj also mean
σj(~z). In particular, I will usually write LhS(3′)
as F (σ1, . . . , σN) or just as F (~σ).

When I use a specific value of N in an exam-
ple, I may use variable names a, b, . . . in place of
z1, z2, . . . . �

Remark. With alternating signs, the coefficients
of a monic 1-var poly g() appear as the esps of its
zeros ~z (also called “roots” of g). I.e, consider

g(X) := [X − z1][X − z2] · · · [X − zN ] .

Multiplying this out, g(X) equals

XN − σ1(~z) ·XN−1 + σ2(~z) ·XN−2

− σ3(~z) ·XN−3 + · · ·+ [ 1]NσN(~z) ·X0 .

Consequently, the ESP Theorem has the handy
corollary that each symmetric polynomial of the
roots of g() is some nice polynomial in the coeffi-
cients of g.

As an application, the “discriminant of g ” is

Discr(g) :=
∏

16j<k6N

[zk − zj]2 .4:

Letting B be the binomial coeff
(
N
2

)
, the RhS

equals

[ 1]B ·
∏
j 6=k

j,k∈[1 .. N ]

[zk − zj] ,

so we see that Discr(g) does not depend on some
arbitrary ordering of the roots. The ESP Thm tells
us that we can compute the discriminant of g from
its coefficients. �

Tools

Here are the utensils that we will use to obtain
the ESP Theorem.

Dictionary order. We define dictionary or-
der , ≺, on pairs of N -tuples ~v = (((v1, . . . , vN))) and
~w, each a tuple of natnums. Say that ~v ≺ ~w if:

There exists an index j ∈ [1 .. N ] with
vj 6= wj. For the smallest such j, fur-
thermore, vj < wj.

Easily, dictionary order♥2 is transitive (~u 4 ~v and
~v 4 ~w together imply that ~u 4 ~w). And dictionary
order is a total order. That is, for each pair ~v and
~w, one of them is 4 the other one.

Profiles. A sympoly can be written more con-
cisely than just listing all of its terms. Consider
the N=3 sympoly Y () with the smallest number
of terms and possessing term a9 ·b4 ·c. Necessarily
Y (a, b, c) equals this sum of six terms:

a9b4c+ a9bc4 + a4b9c+ a4bc9 + ab9c4 + ab4c9

What we have done is take the exponent triple
(((9, 4, 1))) and put it over (((a, b, c))) in all possible
ways.

In general, an exponent N -tuple, α, can always
be put in decreasing (well. . . non-increasing, actually)
order as α = (((h1, . . . , hN))) with h1 > . . . > hN ,
with each of the exponents a natnum. Further-
more, courtesy (1), necessarily h1 > 1. We take
this as our definition of a profile.

Let’s refer to the N natnums hn as heights.
They are indeed shown as such in Figure 9, below.
Let Deg(α) denote the sum h1 + . . .+ hN .

The Canonical Rep. Let Sα(~z) be the sym-
poly having the fewest terms and having term
zh11 · zh22 · · · zhNN . Letting π, below, range over all
permutations of [1 .. N ], then,

Sα(~z) := 1
B
·
∑
π

z
hπ(1)
1 · zhπ(2)2 · · · zhπ(N)

N ,5:

♥2Also known as lexicographic order.

Filename: Problems/Polynomials/symmetric_polys.latex



Prof. JLF King Establishing the ESP Theorem Page 3 of 5

where we need to define the posint B appropri-
ately so that, after combining like-terms, each
term will have a coefficient of 1.

To compute B, we count the number of height-
repetitions in our N -tuple α. Let v1, . . . , vP be
the values of α, and write

α =
(((
v1, . . . , v1︸ ︷︷ ︸

d1

, v2, . . . , v2︸ ︷︷ ︸
d2

, . . . , vP , . . . , vP︸ ︷︷ ︸
dP

,
)))

with strict inequality v1 > · · · > vP . (So v1

equals h1 and vP = hN . There are dj many copies
of the jth value.) It is straightforward to show
that B equals the product [d1!] · [d2!] · · · [dP !].
Thus Sα has a multinomial-coeff number of terms,
namely (??).

The upshot is this: Using dictionary order on
profiles, an arbitrary sympoly Y () has a canoni-
cal representation (abbr. canon-rep)

Y =
K∑
k=1

qkS
αk ,

where α1 � α2 � . . . � αK

and each qk is a non-zero in-
teger.

6:

The natnum K, coefficients qk, and profile se-
quence α1, . . . ,αK are uniquely determined.

Establishing the ESP Theorem
An N -profile can be viewed as in Figure 9.
It determines a decreasing tuple of widths
Jw1, . . . , wLK. Notice that wL will always be the
number of non-zero heights. Thus necessarily
L 6 N , with equality IFF α is the profile of an
ESP. Whoa! Did I mean iff h1 = 1? I.e L = 1?

The key step in proving the theorem is this
lemma.

7: Width Lemma. Fix a profile α and let w1 6
. . . 6 wL be its tuple of widths. Then there is a
posint J so that the esp-product

σw1 · σw2 · · ·σwL , (evidently a sympoly)

has canonical representation

σw1 · σw2 · · · σwL = Sα +
J∑
j=2

qjS
βj ,8:

for some coefficients qj and profiles βJ ≺ βJ−1 ≺
. . . ≺ β2 ≺ α. In other words, the orig-
inal profile α is the highest profile in the esp-
product (8) , and it occurs with a coefficient of 1.♦

w1

w2

...
wL

h1 h2 h3 h4 h5 h6 h7h8h9

. . .
hN

Fig. 9: This shows a profile α having heights h1 >
. . . > hN . In this example, heights h8 through hN
are zero. The picture also defines L many widths
w1 6 . . . 6 wL, where L := h1. In this example
L = 4 and the widths are w1 = 2, w2 = 3, w3 = 6
and w4 = 7.

10: Example. Let α := (((2, 1, 1, 0))); so N = 4. The
width tuple for α is J1, 3K, hence the correspond-
ing esp-product is σ1 · σ3, i.e, is

[a+ b+ c+ d][abc+ abd+ acd+ bcd] .∗:

The only Deg =4 profile which is “dictionarily” be-
low α is β := (((1, 1, 1, 1))). Collecting terms in (∗)
gives that

σ1 · σ3 = Sα + 4Sβ .8′:

So (8′) is (8) with J = 2 and q2 = 4.
There is an alternative way to derive (8′), with-

out multiplying out. Courtesy the lemma, we will
get one copy of α and some unknown number, q,
of copies of β. But the repetition tuple for α is
(((1, 2, 1))), so Sα has

(
4

1,2,1

)
=12 terms. Thus 12 of

the 16 = 4 · 4 products of (∗) will be terms of the
single copy of Sα.

In consequence, the remaining 16−12 = 4 prod-
ucts, when divided by the number of terms in Sβ,
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must equal q. Since Sβ has only a single term,
abcd, we conclude that q = 4/1; this is also what
we saw by multiplying out. �

Sketch of proof of the Width Lemma. There is no
true loss of generality in assuming that N = 5;
now I can write the variables as a, . . . , e rather
than z1, . . . , z5. Referring to (6), let

p · Sα′
+

K∑
k=2

qkS
βk11:

be the canon-rep of the esp-product σw1 ·
σw2 · · ·σwL .

Our goal is to show that α′ equals α and
that p = 1. It is implicit in the argument be-
low (Exercise!) that no profile dictionarily greater
than α can occur in (11). So, I will content myself
with showing that the coeff of α in (11) is 1.

The coeff of α is simply the coeff of the term

ah1bh2ch3dh4eh5∗∗:

in esp-product σw1 · · ·σwL . In each of the L many
esps, the degree of “a” is 1. Thus the highest
degree of “a” in the esp-product is L, which indeed
equals h1. How many of the variables a, b, . . . can
have this maximal exponent L? —at most w1 of
them. So the only way to get term (∗∗) in the
esp-product is if the term used from esp σw1 was
in fact the term abcde.

Rest of proof is missing,
17Sep2001. �

An implementation
The algorithm will manipulate lists OTForm

y =
〈
(((α1, c1))),(((α2, c2))), . . . ,(((αK , cK)))

〉
,12:

where α1 � . . . � αK are profiles and the coeffs ck
are non-zero integers.

Given a second such list

x =
〈
(((β1, q1))), . . . ,(((βK , qK)))

〉
,

let merge-sort(y, x) be the interwoven list of
pairs, sorted by �. Furthermore, like-terms are
combined and terms with coeff zero are dropped.
For example, suppose that α � β � γ � δ � ε
are profiles and our lists are

y :=
〈
(((β, 20))),(((γ, 30))),(((ε, 40)))

〉
;

x :=
〈
(((α, 5))),(((β, 6))),(((γ, 30))),(((δ, 7))),(((ε, 8)))

〉
.

Then merge-sort(y, x) equals〈
(((α, 5))),(((β, 26))),(((δ, 7))),(((ε, 48)))

〉
.

The setup. The given sympoly has canonical
representation

Y =
K∑
k=1

ckS
αk .In:

The desired output poly F has form

F =
J∑
j=1

djΥj ,Out:

where each Υj is OTForm σw1 · · ·σwL for numbers
L and w1 6 . . . 6 wL which depend on j.

An algorithm

The algorithm repeats Steps 1,2,3 below until list
y becomes empty. The value of list f then de-
scribes the desired poly F .

Initialization: Init y to list (12) from (In).
Init f to the empty list 〈〉.

Step 1: If the current y is empty then STOP;
the current value of f describes (Out).

Otherwise, pop-off of y its leftmost pair and
call this pair (((α, c))). Compute L and widths w1 6
. . . 6 wL for profile α.
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Step 2: Courtesy the Width Lemma, we can
write the product σw1 · · ·σwL as〈

(((α, 1))),(((β2, q2))) . . . ,(((βJ , qJ)))
〉

where α � β2 � . . . � βJ are profiles.

Push pair
(((

[w1, w2, . . . , wL], c
)))

onto f.

Step 3: Define a list

x :=
〈
(((β2, cq2))),(((β3, cq3))), . . . ,(((βJ , cqJ)))

〉
;

note the negated coefficients. Now assign

y := merge-sort(y, x) .

(Let K denote the number of pairs in the old y. Then the
number of pairs in the new y may be as much as K+J−2.
But the maximum profile in the new y is strictly≺ the
maximum profile in old y. So eventually y will become
exhausted.)

Efficiency considerations
An expensive part is Step 2, computing the canon-
rep of the esp-product.

To be written.
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