A canonical structure theorem for finite joining-rank maps
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Abstract. A numerical isomorphism invariant, joining-rank, was introduced in [1] as a quantitative
generalization of Rudolph’s property of minimal self-joinings. Therein, a structure theory was
developed for those transformations T whose joining-rank, jr(7T'), is finite. Here, we sharpen the
theorem and show it to be canonical: If jr(T") < co then there is a unique triple (e, p,S), where ¢
and p are natural numbers and S is a map with minimal self-joinings, such that 7" i1s an e-point
extension of SP. Furthermore, the product e - p equals the joining-rank of T

This theorem applies to any finite-rank mixing map, since for such maps the rank dominates
the joining-rank. Another corollary is that any rank-1 transformation which is partial-mixing has
minimal self-joinings. This partially answers a question of [3].

¢] INTRODUCTION

Hints of structure theories for various classes of (typically, zero-entropy) transformations have
been surfacing in the past decade and a half: Among these are the Veech and del Junco—Rudolph
notion of simple maps; the weak-closure dichotomy, [2], for rank-1 maps; and the powerful
relative compact /weak-mixing structure theorems developed by Zimmer, [Z1] and [Z2], and by
Furstenberg [F1]; the latter gave rise to the ergodic-theoretic proof of Szemeredi’s Theorem.

A previous paper Joining-rank and the structure of finite rank mizing transformations, [1],
introduced the joining-rank invariant, showed that jr(7") < rank(7T) for mixing T, and described
the structure of such maps and of their commutants. We have repeated here the salient defini-
tions and results so that the present article can be enjoyed on its own. In order to understand
the motivation and details, however, its predecessor is prerequisite. Since that paper has six
sections, after the introduction we number the sections of the current article §7 and §8. A
reference to “theorem 2.4, then, refers to a theorem of [1].
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Notation. Use the symbol := to mean “is defined to be”; thus a := b means that the
expression b defines the (new) symbol a. Let the expression [n..m) denote the half-open “interval
of integers” [n, m)NZ, and analogously for [n ..m] ete. For a transformation, let 7" denote the
cartesian nth power T' x - -+ x T'; use the same convention for measures, u ", and spaces, X *".
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Transformations. We will use field to mean c-algebra. A measure space is a triple
(X, X, ) where X is the set, X is the field (a scriptfont version of the symbol for the space),
and p is a Lebesgue probability measure. To indicate that T" maps X to itself and preserves
we may write (T: X, ) or simply (T: ). A probability measure { on (Y,)) and a measurable
map f:Y — Y give rise to a new probability measure, £ o 7!, on space (Y, )). Use the symbol
[f]€ to denote this new measure; this emphasizes the view that f acts on €.

The commutant of T, written C(T'), denotes the semigroup of transformations (S: i) such
that ST=TS. For the transformations T' we consider it will turn out that C(T') is always a group.
For an invertible T, the essential commutant EC(T) is the quotient (semi)group C(T)/{T"} ez

Subfields. The trivial subfield is {&, X} whereas F is a proper subfield if F G X. For
a transformation (T: X, ) a factor field F is a T-invariant subfield. T is prime if it has no
proper non-trivial factor fields. A factor field F will also be called “prime” if T|z is prime.
Note: For typographical reasons, in place of T'|r we will sometimes write T'| F.

Given two subfields Fy and F» of a probability space (X, X, u), if it becomes necessary to
emphasize the measure when indicating containment, agree to write F; C* F;. This means that
for each Ay € Fy there exists an Ay € Fy such that p(Ay A Ay) = 0. Equality Fy =# F, means
Fi C* Fy and Fi DH* Fs.

Conversely, let Fy L* F, indicate independence of subfields: u(A; N Az) = pu(Ar)p(As) for
all A; € F;.

Finally, for a collection {F,}, of subfields, let \/ F, denote their join, the smallest field
containing them all.

Joinings. Fixan N € NU{oo}. Given a countable list {(Xn,/,Ln) ‘ 0<n< N} of probability
spaces let (Y,)) denote the cartesian product space (&), X, &), Xn). It will be convenient
to view the X, also as subfields of Y. For instance, we may choose to write Y = \/_ Aj; this
convention will be employed without announcement in the sequel. Now fix a probability measure
{ on (Y,)). Each index-subset I C [0..N) determines a subfield F := ), o; X, and hence a
marginal: Written ¢|F or |7, it is a probability measure on (®n€] X, Qs Xn> defined on
rectangles, A, € &, for n € I, by

[€|I] <®n€[ An> = €<®n A%) where A% denotes A" or Xn de-

pending on whether n € I or not.

Letting I := #1 denote the cardinality of I, call {|; a K-fold or K -dimensional marginal.

Such a measure £ is called a joining of the measures g, i1, ... if all of its 1-dimensional
marginals are “correct” ie., {| ¥, = pin, for each n. The set of such joinings we shall write
as M(pio, 11, ... ). A marginal £|7 is a joining in M({pn | 7 € I}).

Notation for Copies. Agree to employ a subscript (or occasionally a superscript) between
angle brackets to indicate a copy of a measure, field, transformation, or function. Given a space
(X, X, 1) we might refer to a joining n € M(p(1y, f1(2)). Each i3y denotes an isomorphic copy
of 1. Measure 1 lives on space X1y X X9y with field Xy V Xay.

Relative Independent Joining. Given a space (W, W, ) and a subfield Y C W one can
decompose ¢ into a family of fiber measures over ). Letting Y := W/) denote the quotient
space and v := €|y the restriction measure, the fiber measures are Lebesgue probability measures
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A canonical structure theorem for finite joining-rank maps 3
{@y}yey on (W, W) defined uniquely (mod v) by
VBeEW,Y'ey: / oy (B)du(y) = E(BNY"). (L1)

Thus y — ¢4(B) is simply Ey(B), the conditional expectation of the indicator function 15 with
respect to ).

Take R copies of { and define a joining p € M({1y,. .., {(r)), the R-fold relative independent
jowning of £ over ), by

p(Bl X e X BR> = /Yc,oy(Bl) cy(Ba) ... @y(Br)dv(y), B, e W. (1.2)

In the case R = 2 we may write p as {1y Xy {9y or just { xy &.
Viewing V, W1y, W2y as subfields in p := {1y Xy {(2), one can check that W(;y and W, are

conditionally independent relative to ). This means
For bounded W;y-measurable functions f; on Wy x Wisy: Ey(fi- f2) =Ey(f1)-Ey(f2)

where the conditional expectations are taken relative to the measure p. Note for later convenience
the following special case:

If B € W satisfies [¢ xy ¢|(B x B) = &(B) then B € ). (1.3)

The equality says [[¢,(B)]? dv(y) = [ ,(B)dv(y), where 0 < ¢,(B) < 1. Since a number
strictly between 0 and 1 strictly dominates its square, equality between the integrals can occur

only if ¢,(B) € {0,1} for a.e. y. Thus B € ). O

In applications, the measure £ above will itself be a joining. Part (a) below is an easy consequence
of conditional independence. Part (b) is the condition for equality of Jensen’s Inequality in the
language of joinings, a simple but important observation by del Junco and Rudolph.

LEMMA 1.4, Given (X, ) and (Y,v) and a joining { € M(u,v), let p := £y Xy {2y be the
relative independent joining over Y.

(a) If.X<1> = X<2> then Y X,
PROOF OF (b): Let Ay, As,--- € & be a countable collection of sets which separates the points
of X. Then any Lebesgue measure ¢ on (X, X) is determined by its list ¢ (A1), p(Az),... of
values.

Let {¢y}yey be the fiber measure decomposition of £ over ). View the fiber measures as
living on (X, XA'). In this notation

H(A) = A X Y) = /Y oy(A) dv(y) (15)

for each A € X'. By the hypothesis of independence,

[ [t du<y>] — (A D ol (A A)
= [Taan® duty).
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Thus we have equality in Jensen’s Inequality and so y — ¢,(A) is constant for all y outside of
some v-nullset V'(A4). Consequently, y — ¢, is constant for y off the nullset | J_, V(A,). This
constant must be p since the marginal |y is p. Hence £ = p X v. O

Transformation joinings. Suppose (S:W,\) and (T: X, ) are transformations. Given a
joining ¢ of measures A and p, one can let S x T act on £ to create a new joining [S x T]¢ in
M(A, ).

[[S < T]¢] (A x B) :zf(S_l(A) ><T_1(B)> for Ae W,B e X.

A £ € M(\, p) is called a jotning of the transformations S and T if it is ST invariant,
that is, if [SXT]¢ = €. Use J(S,T) to denote the set of such joinings. Saying that a joining & is
“ergodic” or “weak-mixing” means that the transformation (SxT:¢) is. Let Jps(S,T) denote
the ergodic members of J(S,T).

The relative independent joining over a common factor provides an example of a joining of
transformations. Suppose F C W and G C & are factor fields of § and T such that

S|]: = T|g.

Make the isomorphism implicit and denote this factor transformation as (U:Y, Y, v) by making
the identifications W/F =Y = X/G and \|r = v = p|g. With respect to the factor maps

(S:\) — (U:v) +— (T:p) (I.6a)

the relative independent joining p € J(5,T), defined for A € W and B € X, is

p(A x B) ::/Y[E;(A) -E4(B) dv (L.6b)

where the conditional expectations are taken relative to the superscript measures.

A member £ € J(T,T) is called a (2-fold) self-joining of T. An important example is the
diagonal joining A, defined by A (A x B) := (AN B). Each S in the commutant of T gives
rise to a graph joining [I x S]A,, where I is the identity transformation. In the case where
S is some power T™, this joining will be called the n-th off-diagonal joining. Evidently in a
graph joining ¢ := [I x S]JA, the two subfields are identified ie., X =¢ X(2y. The converse,

If¢ e J(T<1>,T<2>) and X<1> =¢ X<2> then, for (I 7)
some invertible S € C(T): ¢ =[I x S|A, '
can be easily verified.

Let Afy denote the M-fold diagonal self-joining whose value A,]Y(Alx ... xXApu) equals p(Aq N
--+NAp), each A, € X. Given (T: p) we may occasionally use the measure p as a synonym for
T, when T is the only transformation acting on it. Thus we might refer to the commutant C'(u).
This will usually be done when p is itself a joining and we have not bothered to give a name
to the transformation acting on it. Particularly common, given (T: ) and (S: \), will be to use

“J(py N)” to mean J(T,S).

DEFINITION. Say that a 2-fold self-joining of T is trivzal if is either product measure p x p
or is an off-diagonal joining, [IxT"]A,. Transformation T has (2-fold) minimal self-joinings
if Jpg(T,T) contains only trivial self-joinings, [R] and [J,R]. For r copies of T, let the set of
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paitrwise non-trivial joinings be denoted by Jpnt(T,...,T). These are the ergodic r-fold
self-joinings such that each 2-dimensional marginal is non-trivial.

The joining-rank of T, written jr(T), is the supremum of natural numbers R such that
Jpnt ({T}HE) is non-empty. Thus “joining-rank 17 is equivalent to minimal self-joinings. Theo-
rem 2.4 asserts that, other than the trivial case of a discrete rotation, jr(7T') < oo implies T is
weak-mixing. Courtesy of this, henceforth

All maps of finite joining-rank are presumed weak-mixing.

That the class of such maps is large, is shown by (I1.8) as well as (7.1) and the remark following
it.

Extensions.  Choose a transformation (S:W,\), a space (Y,v) and a measurable family
{Uy | w € W} of v-preserving transformations on Y. An extension T, of S, is a A\ X v preserving
transformation of W x Y defined by

w,y — Sw,Uu(y)-

If Y is a finite set and v assigns mass 1/n to each point y € Y, where n := #Y, then T is called
an n-potnt extension (or just “finite extension”) of S.

Given (T: X, u) ergodic and a factor field W C X, set S := T'|yy. Then T is an extension of S.
We say this extension is canonical if T|y: = Ty implies W/ = W. This is stronger than just
saying that W is fixed by all automorphisms of 7.

Peripheral terms. Recall that T is partial mizing if o(T) > 0, where o(T) is the supremum
of all o € [0,1] such that liminf, oo pf(ANT™"B) > o - pu(A)u(B) for all A, B € X.

The reader unfamiliar with the following notions, which play only a minor role in the sequel,
is referred to §1: The rank of T', rk(T), a value in [1 .. 00]. The covering number of T, written
k(T); always 0 < (T) < 1 and 1/1k(T) < &(T). Map T is rigid if there exists ny /' oo such
that u(ANT " A) — p(A) for all A € X

Some notation has changed: We use J(5,T) for what was called “Joi(S,T)” in [1] and jr(-)
for “jrk(-)”. Also, [S x TT¢ replaces “(S x T)E" and [I x T"]A,, is used instead of “A%".

The below is collated from theorems 2.4, 2.7, 2.9 and 3.5.

THEOREM 1.8. The class of finite joining-rank transformations is closed under roots, powers,
factors, and weak-mixing finite extensions. Let R denote the joining-rank of T.
(a) For anyn > 1: jr(T") = n-jr(T). Also, # EC(T) < R and C(T) is a group. Indeed,
any S € C(T) is a root, at most an Rth root, of some power of T
(b) If S is a weak-mixing n-point extension of T then jr(S) = n - jr(T). Over any of its
non-trivial factors T is a finite, at most R-point, extension.
(¢) T mixing: jr(T) <rk(T).
(d) T rank-1: jx(T) <1/a(T).

RUDIMENTARY STRUCTURE THEOREM, 4.9. Suppose T is of finite joining-rank. Then there
exists a factor field P C X such that T|p is prime and this factor transformation has a root S
which is prime and has trivial commutant. Thus T is an e-point extension of the p-th power of
S, where e and p are natural numbers satisfying

jo(T) = e-p-jr(9).
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If T has only one prime factor field then the above description is canonical and the numbers e
and p as well as the transformation S, are unique.
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§7 CANONICAL STRUCTURE

The goal of this section is to strengthen the above theorem to the following.

STRUCTURE THEOREM. Suppose jr(T) < oo. Then T is an e-point extension of the p-th power
of a map S with minimal self-joinings, and jr(T) = e-p. Furthermore, the extension is canonical
and e, p and S are unique.

An unexpected application of this theorem provides a large class of maps with minimal self-
joinings. This provides some slight evidence for the joining-closure conjecture (4.1) of [3].

THEOREM 7.1. Any partial mixing rank-1 T has minimal self-joinings.

PROOF: T has joining-rank bounded by 1/a(T) and so T is an e-point extension of some S?
as above. By the Weak-closure Theorem of [2] any proper factor of a rank-1 must be rigid.
But “partial mixing” is closed under factors and is incompatible with rigidity; thus e = 1 and
soT = SP.

Since T is partial mixing it is non-rigid and so the Weak-closure Theorem asserts that 7" only
commutes with its powers and consequently has no roots. Thus T'= 5 and hence has minimal
self-joinings. O

Remark. There is a weak converse to this. A rank-1 map is one whose covering number «(T')
equals 1. Now theorem 3.5 asserts

() = L(T) n :;(T) - 1J '

We have seen that for a partial mixing map, if £(7T) = 1 then it has minimal self-joinings. On
the other hand, given ¢ it is possible to build a partial mixing T as a cartesian product Sy x S5 of
non-trivial maps, such that (7)) > 1—e. Since T is a cartesian product, though, its joining-rank

is infinite by (I.8b).

Lifting product measure. A notion of relative disjointness of an extension is needed. Fix

an ergodic (T: X, X, ). Given factors F C G C X we say that G is a (product) lift of F if
VE € Jpig(T, S) : FLEW = G LW

whenever (S: W, \) is a weak-mixing transformation. With respect to p, say that G is a mazimal
lift of F if whenever G’ D G is a product lift of F then G’ = G. Use the following containment
symbols

g+ F g a lift of F
g+ F G a maximal lift of F
to denote these relations between subfields of X.

An increasing tower of fields in X is a transfinite sequence {G, | @ < 3} where 3 is an
ordinal, o ranges over all ordinals less than 3, and G, C G4 whenever a < o'.

LEMMA 7.2. Consider factors fields F,G, H C X.
(a) If H 2" G and G O* F then H " F.
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(b) If{G. | @ < B} is a tower of factors with F C Go then
Va: Go 2t Fl = \/ Go 2" F.
Consequently, by Zorn’s lemma, any factor F C X has a maximal u-lift.

PROOF OF (b): Let H denote \/,Ga. Since our space is Lebesgue there exists D C H, a
countable dense subcollection, which can be listed Ay, As,... so that every member of D occurs

infinitely often. Choose an increasing sequence {a, }52, of ordinals such that there exists a set
B, € G,, with u(B, A A,) < 1/n. This shows that there is a countable subtower such that

\/ Go, =H.
n=1

and so we can write n for o, and say G, " H.

Fix a weak-mixing (S:W) and £ € Jgw(T,5); view G,, H and W as subfields of X' x W.
Taking an H-measurable function h and W-measurable f, both bounded, we wish to show that
E(h-f) =E(h)-E(f) where E denotes conditional expectation with respect to the joining . But
by hypothesis the equality holds for h replaced by each conditional expectation g, := Eg,_ (h).
And ¢, — h in L' by the Martingale Convergence Theorem. O

Algebraic Extenstons. The introduction discussed the notion of a finite extension. A
well-known generalization of this is an tsometric extension whose definition appears in the
Appendix along with a proof of the following theorem.

THEOREM 7.3. Any ergodic isometric extension of a transformation U is a product lift of U.

Part (a) below is Proposition 6.4 of Furstenberg’s book [F1]. Part (b) follows from Zimmer’s
papers [Z1] and [Z2], assertions 4.3, 7.3 and 7.10. (In a slightly different formulation, (b) also
appears in Furstenberg’s book.)

THEOREM 7.4. (T: X, p) ergodic and G C X a factor.
(a) If u xg p is ergodic then for all M € N the M-fold relative independent joining over G is
ergodic.

(b) If pu xg pi fails to be ergodic then there exists H 2 G, a non-trivial isometric extension of
G, inside of X.

Part (b) and the theorem before combine to yield the following.
LIFTING LEMMA. If G J# F then p xg p is ergodic.
The maximal-joining

For any M and self-joining n € J({T}{‘Q say that a non-trivial factor field F C \/%:1 X(m) 18
a component-factor in n it F C" X,y for some m.

MAIN LEMMA 7.5. Suppose R :=jr(T) is finite.
(i) Given any (S:W,\) and £ € Jpe(S,T) with W /¢ X. Then WV X 28 W.

(ii) Given a pairwise non-trivial joining n € Jpnt ({T}{‘Q and any component-factor F in n:
F X<1> V X<2> VooV X<M>.
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PROOF OF (i): Let Y be a maximal product lift, Y J¢ W, in WV.X and let 3 € J&ay, - &ryny)
be the (R + 1)-fold relative independent joining of ¢ over this maximal ). By the Lifting
lemma and (7.4a) this 3 is ergodic and so some two of Xy,..., X(gy1y must be joined triv-
ially. But all two-fold marginals in a relative independent joining are isomorphic. Consequently,

for p:={uy Xy {2

Either X<1> 1° X<2> or X<1> =r X<2>
By hypothesis W [¢ X. Consequently Y fails to be é-independent of X' and so, by (I.4b),
Xy L2 Xy, Hence Xqy =? X9y and so (1.4a) implies that ) S8 X. Thus Y = WV X. O

PROOF OF (ii): Assume F C X(yy. Since F is non-trivial it is not independent of Xy and so
part (i) yields that F =7 FVX4y. Applying it another M — 1 times obtains

M
Frh X<1> " X<1>\/.X<2> " X<1>\/X<2>\/.X<3> (A \/ X<m>.
m=1
Now (7.2a) implies that F C" \/iw Xy O

Uniqueness. Refer to any member of Jpyt ({T}{{) as a maximal-joining. In what sense
is a maximal-joining, call it g, unique? A superficially “different” maximal-joining could be
obtained from g by applying powers of T to its coordinates or by permuting its coordinates.
That is, for integers ny ...,ngr and a permutation 7 of [1.. R],

[(T" x - x T"") o 7] i

is “another” maximal-joining, where 7: X *® — X% gends (z1,...,2r) to (Ta(1)s-- > Tr(R))-
Our goal is to show that this is the only possibility.
Say that self-joinings n, 3 € J{T}M) are permutation-equivalent if

B=[T"x...xT"™ o7]n

for some integers ny,...,ny and permutation = of [1.. M]. In order to show that the maximal-
joining is unique upto permutation-equivalence, fix two maximal-joinings n' and n2. For
E=1,2, let X% := X<kl> VoV X<kR> denote the join of the component fields of n*. Consider a

5 € JErg(nla 772)

First case: There exists i1,j € [1.. R| such that X<1i> 1€ X<2j>. Letting X<2j> play the role

of F in (7.5ii) we conclude, since T is weak-mixing, that the independence lifts to X<1i> 16 x2,
Reversing the roles of “1”7 and “2” and then again, yields

Vre[l.R]: Xt 18 A2, and AL, 16 A2 (7.6)

(It is natural to want to lift X<1i> 16 X2 to full independence Xt L€ X2, However, for this one

would need to know that n? is weak-mixing.)
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Second case: For each i, pair, X<1i> L8 X<2j>. Now fix any ¢ and note that

flag, v (a3, v

2
< GV VAR

is an ergodic (R 4 1)-fold self-joining of T. Hence some 2-fold marginal is trivial—and it must
be of the form

1
€LX< )V AR

since n? is pairwise non-trivial. By hypothesis this 2-fold marginal is not product measure, so it
must be some off-diagonal [IxT™]A,. Thus there are maps 7:[1..R] — [1..R]and n:[1..R] — Z
with ‘

el vz, =[O, (7.7

Furthermore, if 7(1) = #(:') then the fields X<1> and X<1i'> are linked in £ by an off-diagonal—

hence 1 = ¢/, since n' is pairwise non-trivial. Thus 7 is injective. Hence it is a permutation,
and

>\/X

= [STn* where S :=T"Wx. . . xT" R o7, (7.8)

Application. Identify factor X<1> with X<21>, then take £ to be an ergodic component of the
relative independent joining of n! with n? over X<1> = X<1> For this ¢ assertion (7.6) fails and

so (7.8) must hold.

Courtesy of this, the maximal-joining is “unique”; fix some choice and call it . Indeed,
for any (T: X, u) of finite joining-rank R, agree to use the symbols /,L,X X and T to denote its

maximal-joining, space X := X*B field X : \/ 1 Xy, and transformation (T i) = (T8 ).
Before collecting the foregoing results as parts (a b) of the lemma below, let us glance at an
example.

IMlustration. Suppose jr(T) = 2 and V € C(T) is not a power of T. So ji := [IxV]A, can
represent the maximal-joining. Any S € C(T) provides an ergodic self-joining, [IxS]A, of T.
But S := VXV is in C(T) and so —somehow!—- S has to be as in (7.8), measure-theoretically.

Since # EC(T) < jr(T) = 2, transformation V must be a square root of some power of T,
say, V? = T7. Thus
(VxV:ji) = (IxT" o 7: ji)
where 7 is the flip, (1) = 2 and #(2) = 1.
MAXIMAL-JOINING LEMMA, 7.9. Given (T: ) of joining-rank R. Let i € Jpn7 ({T}{) denote
a maximal-joining and let Xy, ..., X gy denote the component subfields in fi.
(a) This 1 is unique upto permutation-equivalence. Indeed, any pairwise non-trivial joining
n € Jpnt ({T}{‘Q is permutation-equivalent to some M -dimensional marginal of [i.
(b) Consider a { € Jpyg ([L<1>,[L<2>>. If some component of [i\") fails to be ¢-independent of
some component of [i'?) then ¢ is a graph joining [IxS]Ay for an S € C(T)
Conversely, suppose some component of ji{") is ¢-independent of some component
of i{*). If T is weak-mixing then ¢ is product measure [1{") x [1(?),
(¢) Any S € C(T) is of the form T"Wx .. . xT™R) o 7 If r is the identity permutation then
S is a power of T.
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(d) #EC (T) < R! is an upper bound on the essential commutant.

PROOF OF (a): Of necessity M < R. Apply the first part of the foregoing argument with
n?:= i and n' :=n. Let £ € Jpie(n',n?) be an ergodic component of the relative independent
joining of n' with n? over X(1y. The “Second case” argument leading to (7.8) shows that = is
an injection.

PROOF OF (b): Let n' := 4" and n2 := 7). Then ¢ equals [I x S]Aj for an S as in (7.8).
This forces S € C(T), recalling (L.7).

Conversely, is [i is weak-mixing and some X<1i> 1€ X<2j> then we can lift the partial independence
of (7.6) to total independence " 1& ¢

PROOF OF (c¢): Suppose now that the 7 corresponding to S is the identity; we may assume that S
is of the form IxT"xT"3)x xT™R) For each k > 2, the marginal measure [LL;\{<1> V Xy

is IxT™ %) invariant. But X1y L X(ry. As is well known, the identity map is “disjoint” from
any ergodic map (see Appendix) and so T"F) must fail to be ergodic; whence n(k) = 0.

PROOF OF (d): Any collection of 1+ R! many maps in C(T) must have two members, call them
S and U, with the same permutation 7. Hence SU ™! is a power T. O

Properties of the commutant
Given transformation (U:Y,v) and a subgroup G C C(U) let F[G] denote the fized field of G

F[G]:={AecY|VSeG, ST (A) = 4}.

This 1s a U-invariant subfield of ).

COMMUTANT LEMMA, 7.10. Suppose (U:Y,v) is aperiodic.
(a) If G C C(U) is a finite subgroup then F|G] is a non-trivial subfield.

(b) Suppose G1,G2 are subgroups of C(U). Then
F[G1Gy] = F|G1] N F[G:]

where Gy Gy denotes the smallest subgroup containing both Gy and Gs.

(¢) Let Cpn(U) C C(U) denote the set of elements of C(U) of finite order. If EC(U) is finite
then C(U) is a group and Cfy:= Cin(U) is a finite subgroup. Consequently

‘GlGQ‘ < ‘Cﬁn‘ < 0
for any finite subgroups Gy, G2 of C(U).

PROOF: Choose some set B € Y satisfying 0 < v(B) < 1/|G|. Then [Jgoi S™'(B) is a non-
trivial G-invariant set. This establishes (a).

Part (b) is a tautology. Part (c¢) is a consequence of theorem 4.7 and diagram 6.7. Indeed,
Chn is the kernel “ker(¢)” of diagram 6.7 and so has cardinality no more than ‘EC(U)‘ O

Now let us return to our finite joining-rank 7' and its maximal-joining . By the preceding
lemma we know that Cx, C C(T), the subset of elements of finite order, is a finite subgroup.
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LEMMA 7.11. Suppose F is a component-factor of (TX,/’\U?,/,VL) Let G := T[F]| denote the
stabilizer of F 5

[[F]:={SeC(T)|VAe F, 57 (A) = A}
which is a subgroup of Cgy,. Then F|G] = F.

PROOF: Any S stablizing a component-factor (by definition non-trivial) has finite order. For
letting k& denote the order of permutation 7 of (7.9¢), S* equals T™ for some n. Since T is totally
ergodic this T™ can not fix a component-factor, unless n = 0. Thus I'[F] C Chp.

To show equality of F[G] with F, we need but show F[G] C F. Let p := i1y XF [i2y be the
relative independent joining over F and let ¢ be an ergodic component of p. By (7.9) € is a
graph joining

£ =1[Ix S]|Ay for some S € C(T).
By definition PU:<1>><.7:<2> = Ap|rxF, which is isomorphic to fi| 7. Since this latter is ergodic,
ﬂ]—"<1>><}"<2> equals PLf<1>Xf<2> . Thus

([ x S1Aw) | Fxr = ANplrxr
and so S fixes every member of F. In other words, S € G.
Any invariant measure is an integral over its ergodic components—so there is some probability
measure, call it n, on G such that

p(A x B) = / [ x S]A; (A x B) dn(S), A BeX.
G
[Since G is a finite set this integral is just a finite sum.] In particular, for B € F[G]

B B) = [ (B 0S7B) dn(S)= [ i(B0B)dn(S) = i B)
Observation (1.3) applies and indicates that B € F. O

The prime factor is unique. We now have all the tools needed to finish up the proof of the
Canonical Structure Theorem.

Y]

UNIQUENESS PROPOSITION, 7.12. For transformation (T X, ?E,/i) suppose P; C X is a compo-
nent-factor which is prime, for 1 = 1,2. Then Py = Ps.
PROOF: Let G; :=T'[P;], a finite group. Thus G G> is finite and therefore
F|[G1Gy] = FIG{|NF[Gy] = P1 NPy
is a non-trivial factor of T, by the Commutant Lemma above. Thus Py = Ps. O

We know that (T: X, 1) has at least one prime factor; suppose it had two, P and P’. We can
view these as factor fields of Xy in the maximal-joining fi. Hence P = P’. Thus T has a unique
prime factor field.

Lastly we need to show that the S of the Rudimentary Structure Theorem has minimal
self-joinings. Renaming S to T, we have that T is prime with trivial commutant and wish to
show that R := jr(T) equals 1. But in the maximal-joining g for T, the component-factors
Xy, ..., X(ry are each prime; hence

Xy =Xy =+ = Xg).
So each pair of fields must be joined by a graph-joining of some element of C(T). But C(T) =

{T"} ez and so only the off-diagonal joinings are available. Since they are forbidden in the
maximal-joining, R must be 1. O
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68 SIMPLICITY AND (GLASNER’S EXAMPLE

The preceding proof takes pains to never assume that the maximal-joining is weak-mixing. As
we shall see below, it need not be.

Using a circle extension of a circle extension, Eli Glasner constructed in Proposition 1.7 of [G]
an ergodic non-weak-mixing self-joining of a weak-mixing transformation. We recapitulate the
example here, using Chacén’s transformation for the base and the 2-point group Z, = {—1,1}
(written multiplicatively) in place of the circle group. The cocycle will be described explicitly.

Equip Z; with Haar measure. Let (U:Y,v) be Chacén’s transformation and let X' :=Y x Z
and X := Y x 7y x Z5 with ' and p denoting the corresponding product measures. For a
cocycle ¢: Y — 745 define T': X' — X" and T on X by

T'(y.a) := Uy, ac(y)
T(y,a,b) = Uy, ac(y), ba

for a,b € 75. Thus T is a group extension of T’ which is, in turn, a group extension of U.
Suppose that a cocycle can be found so that this T is weak-mixing. Since jr(U) = 1 by [J,R,S],
theorem 1.8 insures that jr(7') equals four.
Define the “flip” F € C(T) by
F(y, a, b) =y, a,—b.

Define a p € J(T,T) as the average of two (non-invariant) graph joinings:

p=1[Ix@T]A, + 1[I x®]A, (8.1)
where ®*(y,a,b) := (y, —a,£b). Both ®* and &~ preserve p and their commutation relation
with T is * o T = T o ®F. Hence the square, ((T><T)2:,0>, is not ergodic; its two ergodic
components are the righthand side of (8.1). On the other hand, (T'xT: p) is ergodic since any

ergodic component would have to be invariant under (TxT)?; yet the action of TxT exchanges
the two graph joinings on the righthand side of (8.1).

The mazimal-joining. The upshot is that transformation (TxT: p) has a factor which is
rotation on a two-point space. Since T will be an extension of this transformation it too has
such a factor. One may check that the maximal-joining is

[L(A1XA2XA3XA4) = p((Al N F_lAz) X (A3 N F_1A4)>.

All the non-trivial 2-fold self-joinings of T' can be observed among the six 2-fold marginals of ji:

[IxF]1A,
.Xl e Xz

[[IXF]]pl T[[IXF]]P Diagonal marginals: fi[13 2 p = fi|2.4 -

X4 — .X3
[I%F]A,

For an arrow, above, labelled with a joining “v”, the “arrow end” points to the field which is the
second coordinate of v and the “feather end” points to the first coordinate of v. Each diagonal
of the diagram is coupled by p, which is a symmetric joining. (It is invariant under exchange of
its first and second coordinates.)

This example demonstrates the necessity that the factor field F of Lemma 7.5 be a component-
factor. The above two-point rotation factor is independent of each subfield A;.
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Making the cocycle. Chacén’s transformation is described below (5.6'). Let H,, denote the
n-block and h,, its length; hq is zero. Henceforth, “n” ranges only over even values. Thus each

hy is even, since hy49 = 9k, + 4. Referring to figure (5.7),

where we have numbered the four spacers 1,,...,4,. Cocycle ¢(-) will be constant on levels of
each n-stack. Having inductively defined ¢(-) on H,, let

(1) =¢(3,) i =+1 and c(2,) = e(4,) = —1. (8.2i)

What follows is a sketch of a standard type of argument that an extension is weak-mixing.

Traversing an n-block has no net effect on the bit-pair. Let Bits(y,a,b) denote the
ordered pair (a,b). Fori € [0.. hy,], let “Ti(a,b)” abbreviate Bits(Ti(y, a, b)), where y is a point
in the base of H,; this is independent of y since the cocycle is constant on levels.

Induction on n establishes

hy—1
H c(Level 7 of Hn> =1.

=0

Equivalently, T (a,?) = (a,?). A second induction on n now shows the following.

Va,b e 75 : T (a,b) = (a,b) (8.2ii)

Ergodicity. T has four “types” of n-block, one for each ordered pair a,b € 7. The n-block
H®? is the sequence of bit-pairs.
T%(a,b) T!(a,b) ... T~ (a,b).
Having chosen type (a,b) for the (n + 2)-block of (%), equations (8.2) determine the types of its
nine constituent n-blocks. They turn out to be, in addition to (a,b), the three types below on

the right.
(a,b) —  (—a,b), (a,ab), (—a,—abd). (8.3)

To prove T ergodic it suffices to show, for some constant i, that each type of n-block contains all
four types of (n — 2K)-block. So viewing (1,1), (—=1,1), (=1,—1) and (1,—1) as the vertices of
a digraph and putting in directed edges according to (8.3), we need but check that the resulting
digraph is connected; following the arrows, one can go from any vertex to any other. Indeed,
only arrows (—a,b) and (a, ab) are needed to show that K = 3 works.

Weak-mixing. It suffices to rule out any non-one eigenvalue. But notice that the leftmost
three n-blocks of Hiii_lz form the pattern

1,1 71,1 1,1
H—TL7 H—TL7 | H—TL7

where “|” represents a spacer. The standard Chacén argument now applies and shows that A = 1
is the only eigenvalue. O
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Final remarks. For a T of joining-rank R, its maximal extension T can not have finite
joining-rank if it is not weak-mixing. Conversely if it is, part (b) of the Maximal-joining Lemma
says that

Any € € JIp.g (T, T) which is not product measure, is a graph joining.
Such a transformation T is said to be (2-fold) simple. Evidently, a weak-mixing simple map
has joining-rank equal to the size of its essential commutant. So if the maximal-joining is

weak-mixing then

je(T) = # EC(T) < [jx(T)]!
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¢A  APPENDIX

Disjointness. An ergodic map is “disjoint” from any identity map in the following sense.
If (T: X, p) is ergodic and I is the identity map on (Y, v) then the only joining ¢ € J(T,I) is
product measure pxuv.

Letting E denote conditional expectation with respect to &, this will follow from showing, for
each bounded function f:Y — R, that Ex(1x X f) is a constant function on X; this will imply
that the fiber measures of ¢ over X' are all equal. But 1xxf is Tx[I invariant and so is £&. Thus
Ex(1xxf) is T-invariant, hence constant.

Algebraic Extensions. Suppose (U:Y,v) is an ergodic transformation and (G, G, n) repre-
sents a compact topological group, its Borel field, and Haar measure. Haar measure is both left
and right invariant since G is compact. A group extension is a transformation T defined on
the space (Y x G, Y x G,v x n) determined by a measurable map ¢:Y — G as follows.

v h—s U(y),he(y) yeY,heG (A1)

where juxtaposition “he(y)” indicates multiplication in the group. Evidently there is a subgroup

G of C(T) isomorphic to G: For g € G define g(y, h) := (y, gh).

Isometric Extensions. In an isometric extension, the fiber space is a compact metric space
M on which acts a transitive group G of isometries. Then M can be identified with a quotient
of G. Here, we will take as our definition that the fiber space is a quotient.

Given a compact metrizable topological group (G,G,n) and closed subgroup I' C G, the
quotient space M := T'\G of right cosets inherits the metric with distance from T'g; to T'gy being
the infimum of dist(2y, x2) over all x; € I'g;. This makes the projection map, 7: G — M sending
h — Th, continuous. Letting M denote its Borel field, (M, M,7) is a probability space, where

7 :=mnonr . Each element g € G acts (from the right) on M by Th 2 Thg. This action
preserves 7). o
An tsometric extension, T, of (U:Y,v) is specified by a measurable cocycle ¢:Y — G. The

mapping
y,m— U(y),mely) yeY,meM (A.2)

defines (T: Y <M, 1/><ﬁ>. This extension is a factor of the group extension T defined in (A.1) via
the homomorphism y, h — y,Th. Even if T is ergodic the larger extension T need not be.

THEOREM A.3. Any ergodic isometric extension of U is a product lift of U.

Remark. The referee informs us that this theorem is essentially equivalent to a result of [F2],
and that [G,W] contains variations on the “product lift” notion. The result also appears in [L].

PROOF: Fix some weak-mixing (S: W, \).
Let us first assume that the extension is a group extension as in (A.1). Consider any proba-
bility measure ¢ on (G,G). For arbitrary B € G and g € G

o9 B) = / -1 (h) dp(h) = / Lpn-(9) dip(h)
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where, as will be the case below, integrals with no subscript are taken over the group G. The
equality above and Fubini’s theorem produce

/G el By in(o) = [ [ Loams(a)dnto) dot

) (+)
= [ (B dotn) 222 [ By dptt) = o),

Now fix a joining { € Jgg(T, S) such that {[y v W = v x A. Our goal is to show that { equals
(v xn) x A
Each g is in C(T) and the identity map [ is in C(S). Thus

&g =g < I]¢

is isomorphic to £ and consequently is an ergodic joining of T' with S. For sets Y’ € Y, B € G
and W' € W its value is

(Y xB)x W) =&(Y' xg7'B) x W) = /Y » Cyw(97' B) dvx) (y,w)

where {¢, .} denotes the fiber measure decomposition of £ over its J x W factor. Average the
{&,}4 to form a joining a(-) := [ &,(-) dn(g), which is not necessarily ergodic. Thus

a((Y' x B) x W') :/G/ eywlg7'B) dvxd(y.w) dng)

by (*)

/Y/ o n(B) dvx\(y,w)

which equals v(Y")n(B)AN(W'). In other words, « is product measure (v x n) x A.
But product measure is ergodic, since T is ergodic and S is weak-mixing. Hence o = ¢, for
n-a.e. g. For such a g,

£ = [[g_l X I]]fg = [[g_l X I]]oz =X
since product measure is unaffected by translation in the fiber direction.

Full Generality. Suppose now that the given ergodic isometric extension is as in (A.2) and
let X := YxM and @ := vxn denote its space and measure. It is a factor of group extension

(T: X, 1) of (A.1) where X := YxG and p := vxn. Given a joining £ € J(T, S) for which
ytw,
define the relative independent joining ¢ € J(T,S) of
<T:/,L> — (T: ﬁ) — (TXS:@
over their common factor, as in (1.6). Thus
Elyww = Elyww = v x \.
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This ¢ need not be ergodic.

Mimicking the argument for a group extension, define ¢, := [g x I|¢ € J(T,S5) and o) :=

f@ £4(-)dn(g) to conclude that X' 1L W. Thus

XA = alzy

= &olmuw for n-a.e. g € G

where the second inequality —since @ x A is ergodic— follows from the uniqueness in the ergodic
decomposition theorem.

But a = [[ﬁx[]]oz for any h € G. So for a ¢ as above,

O“YVW - [[g/_\le]]fg ‘YVW - 5‘Xvw

which equals €. Thus € equals fix), as desired. O
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