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A lemma from LBolt

To compute G:=GCD(73, 27) and Bézout multipliers
S, T st. G = S·73 + T ·27, a particular tabular way of
laying out the Euclidean Algorithm I call the light-
ning bolt or LBolt table, because the update rule
can be drawn so as to resemble a lightning bolt.

n rn qn sn tn

0 73 1 0

1 27 0 1

2

Stage 1 is shown above. At stage n, we compute re-
mainder rn+1 and quotient qn so that

rn+1 = rn−1 − qnrn1.1:

In (1.1), replace “r” by “s” to compute sn+1. Then
replace “r” by “t” to compute tn+1. Inductively,

rn = 73sn + 27tn1.2:

for each n. Continue until some rL+1 = 0; then rL
is G. Hence S := sL and T := tL are particular Bé-
zout multipliers, satisfying G = 73S+ 27T , a linear
combination. Below, L equals 6.

n rn qn sn tn

0 73 1 0
1 27 2 0 1
2 19 1 1 −2

3 8 2 −1 3

4 3 2 3 −8

5 2 1 −7 19

6 1 2 10 −27
7 0 ∞ −27 73

1.3:

Now this particular example has a further property:
Value 27 is a 73-rono.

Summing squares. Fix a posint modulus T and an
T -rono R. Let ≡ mean ≡T . Construct the LBolt

n rn qn sn tn

0 T 1 0

1 R 0 1

1.4:

Ignoring the ~s column for the time being, note, for
n = 0,1, that [rn]2 + [tn]2 is divisible by T .

1.5: LBolt-SOTs Lemma. Complete the (((T ,R)))-LBolt
started in (1.4), where R is a T -rono. Define row
vector An :=

[
rn tn

]
. Then for n = 0, 1, 2, . . .

[rn]2 + [tn]2 ≡ 0 and†n:
rnrn+1 + tntn+1 ≡ 0 .‡n:

[Moreover, the ~t-column is, up to sign, the ~r-column upside
down, as illustrated in the (1.3) table.] ♦

Pf. Easily, (†0, ‡0, †1).
Since rn+1 = rn−1 − qnrn ditto tn+1. Squaring,

[rn+1]
2 + [tn+1]

2 =
[
r 2n−1 + t 2n−1

]
− 2

[
rn−1rn + tn−1tn

]
qn

+
[
r 2n + t 2n

]
q 2
n .

And RhS ≡ 0, as each bracketed-sum is ≡0, courtesy
(†n−1, ‡n−1, †n). Hence (†n+1).

Note rnrn+1 = rn
[
rn−1 − qnrn

]
= rn−1rn − r 2n ·qn.

Thus rnrn+1 + tntn+1 equals

LhS(‡n−1) − LhS(†n)·qn ,

which is ≡0. Hence (‡n). �

Whoa! Need to type the argument that [using sym-
metric remainders in LBolt] when first |rn| <

√
T , then

(((rn, tn))) is a SOTS decomp of T .

RONO: Root-Of-Negative-One

W.r.t a posint T , an integer R is an T -rono, a
“(square) Root Of Negative One”, if

R2 ≡T 1 .

Say that T is rono-ish if T is a posint that has a
rono. I.e, 13 is rono-ish since 52 = 25 ≡13 1.

2: Prop’n. A posint T has a rono IFF T has form
B or 2B, where B is a product of 4Pos primes. ♦
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Pf of (⇒).A T -ronoR is a rono w.r.t each factor of T .
But 4 has no rono, so can’t be a factor of T . And each
4Neg prime has no rono, courtesy LSThm.♥1 �

Pf of (⇐). If J1 ⊥ J2 are each rono-ish, then the
product J1 · J2 has a rono, thanks to CRThm. Since
2 is rono-ish, we only need prove:

Suppose P is a 4Pos prime. For each
natnum k, then, M := Pk has a rono.2a:

WLOG, k > 1. Courtesy the Primitive-root Theo-
rem,♥2 the group

(((
Φ(M), ·, 1

)))
is cyclic. It has order

ϕ(M) = Pk−1 · [P−1] =: T .

Letting g be an M -primroot, we have that gT /2

equals 1. And T is divisible by 4 (since P−1 is) so
negative 1 has sqroots; namely, g±T /4. �

Sums of Two Squares
A posint T is a SOTS if there exist x, y ∈ Z with

x2 + y2 = T .∗:

Write (((x, y)))  T to indicate (∗) and that T is a
posint. To indicate this and that x ⊥ y, write

(((x, y)))
⊥
 T .

Some pair in (((T, x, y))) is coprime IFF every pair
is. Call T coprime-SOTS or just cop-SOTS if
there exists a pair (((x, y))) ⊥ T . Finally, T is strictly
cop-SOTS if T is SOTS and every SOTS decompo-
sition T = x2+y2 has x ⊥ y.

Note that 8 is SOTS [8 = 4+4], but not cop-SOTS. In
contrast, 25 is cop-SOTS [25 = 9+16] but not strictly
cop-SOTS, since 25 = 02 + 52. Finally, 13 = 4 + 9 is
strictly cop-SOTS, since that is its only SOTS decom-
position.

♥1The Legendre-Symbol Thm. Use CRT for the Chinese Re-
mainder Thm. An integer N is 4Pos if N ≡4 1. And N is
4Neg if N ≡4 1.

♥2Alternatively, thm (10‡) shows the existence of anM -rono.

3: Fermat SOTS-prime Thm. Prime P is SOTS IFF
P = 2 or P ≡4 1. Then, P has but one SOTS decom-
position; further, it is a coprime-SOTS decomp. ♦

Set up. Below we fix a 4Pos prime P and give two
proofs that it is SOTS. Each uses a P-rono R, and

S <
√
P < S+1

where S := b
√
Pc. Let ≡ mean ≡P . �

First Proof. We will show that the integer M in (3a),
below, is 1, by establishing that 0 < M < 2.

The number of pairs in [0 .. S]×2 is [S+1]2. This
exceeds P, so there exist (Pigeon-hole principle) two dis-
tinct pairs (((a, b))) 6= (((α, β))) such that

a+Rb ≡P α+Rβ .

So
�� ��x ≡ Ry , where x := a− α and y := β − b. Hence

x2 + y2 ≡ [ 1 + 1] · y2 ≡ 0 .

So there is a “multiplier” M ∈ Z with

x2 + y2 = M ·P .3a:

Not both x and y are zero (since the pairs were distinct),
so M > 1. And x2 + y2 6 2·S2 < 2P, so M < 2. �

3b: Question. Where did the above proof use that P
is prime? �

Second Proof. We can view (((ZP,+, 1))) as a discrete
circle. On it, define “circular distance”

d(b, c) :=
∣∣〈b− c〉∣∣ , where 〈·〉 means

symmetric residue.

Since R ⊥ P, the S+1 points tR ∈ ZP, for t ∈ [0 .. S],
are distinct. Measuring from each point “clockwise”
around the circle to the next, the average distance to
the (spatially) next point is

P

S+1

note
<
√
P .

Filename: Problems/NumberTheory/sots-4sqr.latex
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Thus there are distinct points whose distance (Why?)
is 6S. I.e, there are indices 0 6 i < j 6 S, with

S > d(jR, iR) = 〈kR〉 =: x ,
where k := j − i, and
therefore k ∈ [1 ..S].

Consequently, 0 < x2 + k2 6 2·S2 < 2P. And, as
above, x2 + k2 ≡ k2 + k2 = 0. �

Melding. Is SOTS sealed under multiplication? If

[α2 + β2] · [x2 + y2] = µ2 + ν2 ,4a:

where we have integer-valued formulas for µ and ν,
then “Yes!”. And indeed, these definitions work:

µ := αx− βy and
ν := βx+ αy .

4b:

We have melded (((α, β))) with (((x, y))), getting new
pair (((µ, ν))). That is,

Meld
(
(((α, β))),(((x, y)))

)
=: (((µ, ν))) , defined in (4b).

Motivation?: Multiplying scaled rotation-matrices,[
α β
β α

][
x y
y x

]
=
[
µ ν
ν µ

]
,4c:

certainly gives another scaled rotation-matrix. Us-
ing (4c) to define µ and ν, gives (4b). And taking
determinants in (4c), hands us (4a). [Equivalently, view
(((α, β))) as complex number α+βi , then multiply.]

Melding is sometimes conveniently written as an
infix operator:

(((α, β)))M (((x, y))) := Meld
(
(((α, β))),(((x, y)))

)
.

Easily, operatorM is commutative and associative.

Full meld. To normalize an intpair (((α, β))) means:

Replace α by |α| and β by |β|. Then, if
need be, exchange α, β so that now α 6 β.

For example, the normalized version of ((( 6, 5))) and of
((( 5, 6))), is (((5, 6))).

Define the full meld of pairs to be

(((α, β))) F (((x, y))) := Nrmlize
(
(((α, β)))M (((x, y)))

)
.4d:

E.g, (((2, 1)))M ((( 3, 4))) = ((( 10, 5))) , but
(((2, 1))) F ((( 3, 4))) = (((5, 10))) .

Easily, F is commutative. Exer 4d: Prove or CEX:
Operatorname F is associative.
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Pf of Uniqueness of prime-SOTS. [Use ≡ for ≡P , and 〈·〉
for 〈·〉P. ] WLOG P is odd. Consider two decomposi-
tions

α2 + β2 = P = x2 + y2 ,∗∗:

with α, β, x, y ∈ [1 ..
√
P) .∗:

Taking (∗∗) mod-P implies 〈α/β〉2 ≡ 1. In par-
ticular, 〈α/β〉 does not equal its own reciprocal, so
〈β/α〉 is the other [P is prime] sqroot of 1. Also 〈x/y〉
and 〈y/x〉 are the two sqroots of 1. So WLOG,
〈x/y〉 = 〈β/α〉. I.e,

µ := αx− βy ≡ 0 .

Our (∗) implies 0 < αx < P. Thus P<µ<P, so
µ = 0. Thus αx = βy.

Melding the two SOTS decompositions (∗∗), by let-
ting ν := βx+ αy, says that

P2 = µ2 + ν2
note
==== ν2 ,

so ν = P, since they’re both positive. Thus

αx = βy and†:
P = βx+ αy .‡:

Consider a prime q •| α, and write qn •|| α. If qn fails
to divide y, then q •| β, so q •| P, hence q = P. But
x,y > 1 forces # , since RhS(‡) > 2P. Hence qn •| y.

This applies to every prime dividing α; thus α •| y.
This argument applies in reverse, hence α |• y. Thus
α = y, since both are positive. Consequently, the two
decompositions are the same. �

5: Fermat SOTS Thm. A posint T is SOTS IFF:
Every 4Neg prime P •| T occurs to an even power
in T . ♦

Pf of (⇐).

Pf of (⇒).

The Setting for coprime-SOTS

We prove several lemmas with a common setting. We
have posints Ω and T as well as integers

α2 + β2 = Ω ;

x2 + y2 = T ;

(((µ, ν))) := Meld
(
(((α, β))),(((x, y)))

)
;

(((m,n))) := Meld
(
(((β, α))),(((x, y)))

)
.

S1:

6: Lemma. Consider (S1), and a prime P which
divides GCD(µ, ν). Then

P •| [ Ω or GCD(x, y)] , and†:
P •| [GCD(α, β) or T ] .‡: ♦

Proof. Well, P divides µα+ νβ, which by (S1) equals

αxα+ βxβ = [α2 + β2] · x .

I.e, P •| Ωx. By symmetry, P •| Ωy. So if P �r| Ω, then
P divides both x and y.

We have established (6†). Symmetry gives (6‡). �

7: Corollary. Suppose (((α, β)))
⊥
 Ω and (((x, y)))

⊥
 T . If

Ω ⊥ T , then

Meld
(
(((α, β))),(((x, y)))

) ⊥
 ΩT . ♦

8: Both-melds Lemma. Assume (S1), and that some
oddprime P divides each of µ, ν,m, n. Then:

Either P •| GCD(α, β) or P •| GCD(x, y).9: ♦

Pf. By hyp., P •| [µ2 + ν2]
note
==== ΩT . I.e, P •| ΩT . Note

m = βx− αy and
n = αx+ βy .

4b′:

And P divides ν2 + n2
note
==== [ΩT ] + 4αβxy. But P 6= 2,

so P •| αβxy. Courtesy (∗), then, WLOG

P •| α .

So to establish (9), WLOG P �r| β. Now (6‡) gives us

P •| T .

Filename: Problems/NumberTheory/sots-4sqr.latex
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And T = x2 + y2. So if we can prove that

P •| x ,Goal :

then necessarily P •| y. Now (9) will follow.
By hypothesis, P divides ν and m. Consequently,

P divides ν2 +m2 note
==== 2[β2x2 + α2y2]. Therefore,

P •| [β2x2 + α2y2] .

This, together with P •| α, produces
�� ��P •| βx . But

P �r| β. Thus (Goal). �

Application. For an oddprime P, we like to know that
each power, Pk, is coprime-SOTS. We get this by in-
ducting♥3 on k, using the next theorem. It says, given
a couple of coprime-SOTS decomps, that at least one
of their two melds will be a coprime-SOTS decompo-
sition. �

10: Good-meld Thm. Suppose

(((α, β)))
⊥
 Ω and (((x, y)))

⊥
 T ,∗:

where Ω and T are powers of an oddprime P. Then

At least one of Meld
(
(((α, β))),(((x, y)))

)
and

Meld
(
(((β, α))),(((x, y)))

)
is a coprime-SOTS de-

composition of ΩT .
10†:

Consequently, by inducting on the below k,

For each prime P ≡4 1 and each natnum k,
the power Pk is coprime-SOTS.10‡: ♦

Proof. Since Ω and T are powers-of-P, the only way
both melds could fail is if P divides each of µ, ν,m, n.
But (9) contradicts (∗).

As for (10‡), use (3) for the k=1 case. And use (10†)
for the induction on k. �

♥3Indeed, given a SOTS-decomposition of P, we can use
the repeated-squaring technique to produce a coprime SOTS-
decomp of PLarge. However, since we are not reducing mod-
something, this only changes a cubic-alg into a quadratic-
algorithm.
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Sums of FOUR squares

4Square Notation. Below, a tuple x means the
4-tuple (((x1, x2, x3, x4))) of integers. Use JxK2 for the
sum

∑4
j=1 [xj ]

2. �

11: Prop’n. For oddprime P, there exists tuple x and
“multiplier” M ∈ [1 ..P) st. JxK2 = MP. ♦

Prelim. Let NQR and QR mean mod-P, use ≡ for
≡P , and let H := P−1

2 . �

Pf. Since each 4Pos P is SOTS, WLOGenerality
P ∈ 4Neg. Take β ∈ Z+ smallest st.β ∈ NQR; thus
β > 2. Since 1 ∈ NQR, it follows that β ∈ QR; so
there exists x ∈ [1 .. H] with x2 ≡ β.

Recall β − 1 > 1; thus β − 1 ∈ QR, since β was the
smallest non-QR. So ∃y ∈ [1 .. H] with y2 ≡ β − 1.
Summing,

0 < 1 + x2 + y2 < 1 + [P2 ]2 + [P2 ]2

< 1 + [P2/2] < P2 .

OTOHand, 1 + x2 + y2 ≡ 1 + β + [β−1] = 0.
Consequently, 1 + x2 + y2 equalsMP for some posint
M < P. And 1 + x2 + y2 is a sum of three [hence four]
squares. �

12: Euler’s four-square identity. Suppose βββ and x are
tuples. Then this y

y1 := β1x1 + β2x2 + β3x3 + β4x4

y2 := β1x2 + β2x1 − β3x4 + β4x3

y3 := β1x3 + β3x1 + β2x4 − β4x2
y4 := β1x4 + β4x1 − β2x3 + β3x2

12a:

is a tuple for which JyK2 = JβββK2 · JxK2.
Now suppose M is a posint st. βj ≡M xj for all j.

Then each of y2, y3, y4 is ≡M 0. ♦

Proof. Verifying JyK2 = JβββK2 · JxK2 can be done
tediously, or by using the norm on the Quaternions.

As for looking modM , note that the sum of the
first two terms of y2 is mod-M congruent to

x1x2 + x2x1 ≡M 0 ;

ditto the last two terms. And ditto for y3 and y4. �

Defn. Write the y from (12a) as y = BigMeld(βββ,x).�

13: 4Square Thm (Lagrange). Each natnum T is a sum
of 4 squares. ♦

Reduction. By factoring T into primes, write each
prime as a 4Sqr, then BigMeld the decompositions.
So WLOG T is prime. Since 2 and 4Pos are SOTS
–and SOTS is 4Sqr– WLOG T is a 4Neg prime. �

Proof: 4Neg prime P is 4Sqr.From (11), take x andM
with JxK2 = MP. WLOGM > 2. An Infinite Descent
argument will give us our thm, if we can produce a
new tuple z and multiplier K ∈ [1 ..M) such that
JzK2 = KP.�� ��Case: M is even Since MP is even, the number
of odd entries in x must be even. So WLOG x1 ≡2 x2
and x3 ≡2 x4. Thus these are integers:

z1 := 1
2 [x1 + x2] , z3 := 1

2 [x3 + x4] ,

z2 := 1
2 [x1 − x2] , z4 := 1

2 [x3 − x4] .

Due to cancelling of cross-terms, JzK2 = 1
2JxK2 = M

2 P.�� ��Case: M is odd ThusM > 3. Taking symmet-
ric-residues mod-M , let βj := 〈xj〉M and thus define
a tuple βββ. Evidently

JβββK2 ≡M JxK2 ≡M 0 ,

so there is a natnum K with JβββK2 = KM .
Could each βj be zero? Well, if M divided each xj ,

thenM2 •| JxK2 = MP. SoM •| P, contradicting that
M ∈ [2 ..P). Thus

�� ��K > 1 . To show that
�� ��K < M ,

note we have strict inequality |βj | < M
2 , since M is

odd. Thus
JβββK2 < 4 · M2

4 = M ·M .

So our task is to produce a tuple z st. JzK2 = KP.

BigMelding. Define y by (12a). Courtesy (12),
each of y2, y3, y4 is ≡M 0. And

y1 ≡M JxK2 = MP ≡M 0 .

Thus z := 1
M y is an integer-tuple. Moreover

JzK2 = 1
M2 · JβββK2 · JxK2

= 1
M2 ·KM ·MP = KP .

Now ain’t that Nifty! �
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SOTS to Dirichlet
Krishna Alladi and George Andrews sketched to me
(over coffee) a proof of a special case of Dirichlet’s
theorem on Arithmetic Progressions. It shows that
P := 4Z + 1 has ∞ly many primes. (They don’t know
the author of the proof.) The tool we need is

Fix a SOTS N , and let q be the product of
all the 4Neg primes (with multiplicity) that
divide N . Then q is a perfect square.

14:

I.e, each 4Neg prime dividing a SOTS must divide it
to an even power.

Producing a new 4Pos prime.Given a finite multiset S
of 4Pos primes, we will produce a new 4Pos prime.
Define

σ :=
∏

(S) and

N := 12 + [2σ]2 = 1 + 4σ2 .

Every divisor of σ is coprime to N , so ISTShow that
N has a 4Pos prime-divisor. FTSOC, suppose every
prime-divisor of N is 4Neg. By (14), then, N is a
perfect square. Hence N and 4σ2 are squares differing
by 1. But the the only such pair is (((1, 0))). Yet 4σ2 is
not zero, since σ >

∏
(∅) = 1, so 4σ2 > 4. �
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