Sums of Two Squares and Four Squares
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9 August, 2018 (at 11:23)

A lemma from LBolt

To compute G:=GCD(73,27) and Bézout multipliers
S, T st. G =573+ T-27, a particular tabular way of
laying out the Euclidean Algorithm I call the light-
ning bolt or LBolt table, because the update rule
can be drawn so as to resemble a lightning bolt.

n ] ] |
0 3] — 1 0
1 27 0

2

Stage 1 is shown above. At stage n, we compute re-
mainder r,41 and quotient g, so that

1.1: Tndl = Tn—1 — OdnTn

In (1.1), replace “r” by “s” to compute s,+1. Then
replace “r” by “t” to compute t,41. Inductively,

1.2: rn, = 13s,+ 27t,

for each n. Continue until some rp4; = 0; then rp,
is G. Hence S := sy, and T := t;, are particular Bé-
zout multipliers, satisfying G = 735 + 27T, a linear
combination. Below, L equals 6.

N[ O )
0 B3] - 1 0
1 27 2 1
2 19 1 1 -2
1.3: 3 8 2 —1 3
4 3 2 3 -8
5 2 1 —7 19
6 1 2 10 —27
7 0] oof -—27 73

Now this particular example has a further property:
Value 27 is a 73-rono.

Summing squares. Fix a posint modulus 7 and an
T-rono R. Let = mean =7 . Construct the LBolt

n H T ‘ dn ‘ Sn ‘ 7%
1.4: 0 T — 1 0
1 R 0 1

Webpage http://people.clas.ufl.edu/squash/

Ignoring the § column for the time being, note, for
n = 0,1, that [r,]? + [t,)? is divisible by T.

1.5: LBolt-SOTs Lemma. Complete the (T, R)-LBolt

started in (1.4), where R is a T-rono. Define row

vector A,, = |7y, tn}. Then formn =10,1,2,...
Tt [7””]2 + [tn]2 = 0 and
I TnTn+l + tntny1 = 0.

[Moreover, the t-column is, up to sign, the r-column upside
down, as illustrated in the (1.3) table.] %

Pf. EaSiIY7 (TO?iO?Tl)'
Since rp41 = Tn—1 — qpTyn ditto t,41. Squaring,

raa? + [tard)® = iy + 62 4]
- Q{Tn_lrn + tn_ltn}qn
+ [r,% + ti]qﬁ.

And RhS = 0, as each bracketed-sum is =0, courtesy
(Tnfla infla an) Hence (Tn+1)'

Note 7nTni1 = Fn[rfn-1 — GnTn] = rn—17n — T'p-dn.
Thus r,rp+1 + thtnr1 equals
LhS(f,-1) — LhS(1,)an,
which is =0. Hence (1,,). ¢

Need to type the argument that [using sym-
metric remainders in LBolt] when first |T’n| < v/7T, then
(7, tn) is a SOTS decomp of T.

RONO: Root-Of-Negative-One

W.r.t a posint 7, an integer R is an 7 -rono, a
“(square) Root Of Negative One”, if

R? =r -1.

Say that T is rono-ish if T is a posint that has a
rono. l.e, 13 is rono-ish since 52 = 25 =3 -1.

2: Prop'n. A posint T has a rono IFF T has form
B or 2B, where B is a product of 4P0OS primes. %
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Pf of (=).A T-rono R is arono w.r.t each factor of 7.
But 4 has no rono, so can’t be a factor of 7. And each
4NEG prime has no rono, courtesy LSThm.! ¢

Pfof («). If Jg L Jy are each rono-ish, then the
product Ji - Jo has a rono, thanks to CRThm. Since
2 is rono-ish, we only need prove:

Suppose P is a 4P0Os prime. For each

2a: natnum k, then, M = P¥ has a rono.

WLOG, k > 1. Courtesy the Primitive-root Theo-
rem,”? the group (®(M),-,1) is cyclic. It has order

@(M) = P 1. [p—1] = T.

Letting g be an M-primroot, we have that ¢7/2
equals -1. And 7 is divisible by 4 (since P—1 is) so
negative 1 has sqroots; namely, g=7/4. ¢

Sums of Two Squares
A posint T is a SOTS if there exist x,y € Z with

*1 2?42 =T.

Write (z,y) ~ T to indicate (%) and that T is a
posint. To indicate this and that x L y, write

1
(z,y) ~ T.

Some pair in (T,z,y) is coprime IFF every pair
is. Call T coprime-SOTS or just cop-SOTS if
there exists a pair (z,y) T Finally, T is strictly
cop-SOTS if T is SOTS and every SOTS decompo-
sition T = 22+y? has = L y.

Note that 8 is SOT'S [8 = 4+4], but not cop-SOTS. In
contrast, 25 is cop-SOTS [25 = 9+ 16| but not strictly
cop-SOTS, since 25 = 0% + 52. Finally, 13 =4+ 9 is
strictly cop-SOTS, since that is its only SOTS decom-
position.

“!The Legendre-Symbol Thm. Use CRT for the Chinese Re-
mainder Thm. An integer N is 4Pos if N =4 +1. And N is
4Neg if N =, -1.

“2 Alternatively, thm (10%) shows the existence of an M-rono.

Sums of Two Squares
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3: Fermat SOTS-prime Thm.  Prime P is SOTS IFF
P =2 or P =4 1. Then, P has but one SOTS decom-
position; further, it is a coprime-SOTS decomp. ¢

Set up. Below we fix a 4P0S prime P and give two
proofs that it is SOTS. Each uses a P-rono R, and

S < VP < S+1

where S := |v/P|. Let = mean =p. O

First Proof. We will show that the integer M in (3a),
below, is 1, by establishing that 0 < M < 2.

The number of pairs in [0..S]*? is [S+1]*. This
exceeds P, so there exist (Pigeon-hole principle) two dis-
tinct pairs (a,b) # (a, 8) such that

a+Rb = a+RS.

So , where z := a — a and y := § — b. Hence

4y = [F141]-42 = 0.

So there is a “multiplier” M € Z with
3a: ?+y? = M-P.

Not both x and y are zero (since the pairs were distinct),
soM>1. And 22 +¢y> < 252 <2P,so M <2. ¢

3b: Question. Where did the above proof use that P
is prime? O

Second Proof. We can view (Zp,+,1) as a discrete
circle. On it, define “circular distance”

where (-) means
symmetric residue.

d(b,c) == |(b—10)|,

Since R L P, the S+1 points tR € Zp, for t € [0..5],
are distinct. Measuring from each point “clockwise”
around the circle to the next, the average distance to
the (spatially) next point is

P note
— P.
&1 <~ VP
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Thus there are distinct points whose distance (Why?)
is <S. L.e, there are indices 0 < i < j < S, with

. . N . here k£ = j — i, and
S 2 d(jR,iR) = (kR) = x, jc)‘ilerefore ke[l.S].

Consequently, 0 < z? +k? < 2:52 < 2P. And, as
above, 22 + k> = k2 + k2 = 0. ¢

Melding. Is SOTS sealed under multiplication? If
4a: [0+ 6% - [2* +y?] = p? + 12,
where we have integer-valued formulas for p and v,

then “Yes!”. And indeed, these definitions work:

ib: B = axr— Py and
v = fr+ay.
We have melded («,() with (x,y), getting new
pair (i, ). That is,
Meld ((e, B8), (x,9)) =: (p,v), defined in (4D).

Motivation?: Multiplying scaled rotation-matrices,

. a-Blle-y| _ [pv
de: BRI =]
certainly gives another scaled rotation-matrix. Us-
ing (4c) to define p and v, gives (4b). And taking
determinants in (4c), hands us (4a). |Equivalently, view
(a, B) as complex number a+ 34, then multiply.]

Melding is sometimes conveniently written as an
infix operator:

(o, ) M (z,y) == Meld((, ), (z,9)) -

Easily, operator M is commutative and associative.

Full meld. To normalize an intpair (o, ) means:

Replace o by |a| and § by |B|. Then, if
need be, exchange «, 8 so that now a < 3.

For example, the normalized version of (-6,5) and of
(-5,-6), is (5, 6).
Define the full meld of pairs to be
4d: (o, B) F (z,y) = Nrmlize((a,ﬁ) M (z, y))
E.g, (2,1) M (-3,4) = (-10,5), but
(27 1)]:(7374) = (51 10)

Easily, F is commutative. Exer 4d: Prove or CEX:
Operatorname JF is associative.

Filename: Problems/NumberTheory/sots-4sqr.latex
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Pf of Uniqueness of prime-SOTS. [Use = for =p, and (-)
for (-}p.] WLOG P is odd. Consider two decomposi-
tions

sk o?+p% =P = 22+,
*: with o, 8,2,y € [1..VP).

Taking (**) mod-P implies (a/B)? = -1. In par-
ticular, (/) does not equal its own reciprocal, so
(B/a) is the other |P is prime| sqroot of ~1. Also (z/y)
and (y/z) are the two sqroots of -1. So WLOG,

(x/y) = (B/a). Le,
pw = axr—LPy = 0.

Our (x) implies 0 < axz < P. Thus -P<pu <P, so
w=0. Thus ax = By.

Melding the two SOTS decompositions (xx), by let-
ting v = Bx + ay, says that

note
P2 _ M2+V2 V2,

so v = P, since they’re both positive. Thus

s ax = Py and
18 P =px+ay.

Consider a prime q o «, and write q" o «. If g" fails
to divide y, then ¢q o 3, so g ¢ P, hence ¢ = P. But
x,y > 1 forces 3¢, since RhS(f) > 2P. Hence q" o y.

This applies to every prime dividing «; thus « ¢ y.
This argument applies in reverse, hence o o y. Thus
a =y, since both are positive. Consequently, the two
decompositions are the same. ¢

5: Fermat SOTS Thm. A posint T is SOTS IFF:
Every ANEG prime P o T occurs to an even power
inT. O

Pf of (<).

Pf of (=).

The Setting for coprime-SOTS
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The Setting for coprime-SOTS

We prove several lemmas with a common setting. We
have posints €2 and T as well as integers

a2+62 — Q,
31 332+y2 =T,
(1, v) = Meld((e, 8), (2,9)) ;
(m,n) = Meld((8, @), (z,v)) -
6: Lemma. Consider (S1), and a prime P which

divides GCD(p,v). Then

T: P o [ Q  or GCD(z,vy)],
I+ P o [GCD(a,B)or T ]. O

and

Proof. Well, P divides p« + v3, which by (S1) equals
aza+ pzf = [+ 57 - z.
Le, P o Qz. By symmetry, P o Qy. So if P }Q, then

P divides both x and y.
We have established (61). Symmetry gives (61). 4

7: Corollary. Suppose («, B) % Q and (z,y) 5T, If
Q 1L T, then

Meld((av, B), (z,y)) ~ QT. O

8: Both-melds Lemma.  Assume (S1), and that some
oddprime P divides each of j,v, m,n. Then:

9:  Either P o GCD(«,3) or P o GCD(z,y). O

Pf. By hyp., P o [u2 + 2] 222 QT Le, P o QT. Note

n m = fxr—ay and
' n = ar+ Py.

And P divides 12 + n? 22< [QT] + 4afzy. But P # 2,
so P ¢ afzy. Courtesy (x), then, WLOG

P a.
So to establish (9), WLOG P }3. Now (61) gives us

PoT.
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And T = 2% 4+ y?. So if we can prove that
Goal: P o z,

then necessarily P o y. Now (9) will follow.
By hypothesis, P divides v and m. Consequently,

2 note

P divides v? + m? == 2[3%2? + a?y?]. Therefore,

P [62302 + a2y2] .

This, together with P ¢ «a, produces . But

P ;3. Thus (Goal). ¢

Application. For an oddprime P, we like to know that
each power, PX, is coprime-SOTS. We get this by in-
ducting"® on k, using the next theorem. It says, given
a couple of coprime-SOTS decomps, that at least one
of their two melds will be a coprime-SOTS decompo-
sition. [

10: Good-meld Thm. Suppose
*: (o, B) % Q and (z,y) ST,
where € and T' are powers of an oddprime P. Then

At least one of Meld((«,f),(z,y)) and
10t: Meld((8, @), (z,v)) is a coprime-SOTS de-
composition of QT

Consequently, by inducting on the below k,

For each prime P =4 1 and each natnum k,

10f: the power PX is coprime-SOTS.

O

Proof. Since Q and T are powers-of-P, the only way
both melds could fail is if P divides each of u, v, m,n.
But (9) contradicts (x).

As for (10f), use (3) for the k=1 case. And use (107)
for the induction on k. ¢

“3Indeed, given a SOTS-decomposition of P, we can use
the repeated-squaring technique to produce a coprime SOTS-
decomp of P8¢ However, since we are not reducing mod-
something, this only changes a cubic-alg into a quadratic-
algorithm.
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Sums of FOUR squares

4Square Notation. Below, a tuple x means the
4-tuple (w1,z2,73,74) of integers. Use [x]? for the
sum Z?Zl [z;]2. O

11: Prop'n. For oddprime P, there exists tuple x and

“multiplier” M € [1..P) st. [x]?> = MP. O
Prelim.  Let NQR and QR mean mod-P, use = for
=p, and let H := %. [l

Pf.  Since each 4Pos P is SOTS, WLOGenerality
P € ANEG. Take § € Z smallest st. 8 € NQR; thus
B > 2. Since -1 € NQR, it follows that -8 € QR; so
there exists z € [1.. H] with 2? =-4.

Recall 6 —1 > 1; thus 8 — 1 € QR, since 3 was the
smallest non-QR. So Jy € [1.. H] with y*> =3 — 1.
Summing,

0 < l+a?+y® < 1+[E2+[5)?
< 1+[P?/2] < P2,
OTOHand, 1+ 22 +¢y?> =1+ -8 + [3-1] = 0.
Consequently, 1+ 22 + 32 equals MP for some posint
M < P. And 1+ 2% +y? is a sum of three [hence four]
squares. ¢

12: Euler's four-square identity. Suppose 8 and x are

tuples. Then this y

y1 = Bix1 + P2z + B3w3 + Bary
y2 = —B1%2 + Pfar1 — B3xg + Pax3
y3 = -B1x3 + B3T1 + Box4 — P41
Ys = —B1x4 + a1 — Box3 + P31

12a:

is a tuple for which [y]* = [B]? - [x]*.
Now suppose M is a posint st. 8; =pr x; for all j.
Then each of yo,y3,ys is =7 0. O

Proof.  Verifying [y]?> = [B]* - [x]* can be done
tediously, or by using the norm on the Quaternions.
As for looking mod M, note that the sum of the

first two terms of yo is mod-M congruent to
172 + w21 =p 0

ditto the last two terms. And ditto for y3 and y4. ¢

Sums of FOUR squares
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Defn. Write the y from (12a) as y = BigMeld(8, x).[]

13: 4Square Thm (Lagrange). Each natnum 7T is a sum
of 4 squares. O

Reduction. By factoring T into primes, write each
prime as a 4Sqr, then BigMeld the decompositions.
So WLOG T is prime. Since 2 and 4P0s are SOTS
—and SOTS is 4Sqr— WLOG 7T is a 4NEG prime. [J

Proof: ANEG prime P is 45qr.From (11), take x and M
with [x]? = MP. WLOG M > 2. An Infinite Descent
argument will give us our thm, if we can produce a
new tuple z and multiplier K € [1..M) such that
[z]? = KP.

{CASE: M is even] Since MP is even, the number
of odd entries in x must be even. So WLOG 71 = z9
and r3 =p x4. Thus these are integers:

21 = glry+x], 23 = %[$3+934],

[x1 — x|, 24 = %[1‘3 — xy4].

N[ D=

zZ9 =

Due to cancelling of cross-terms, [z]? = 1[x]* = 4'P.

[CASE: M is odd} Thus M > 3. Taking symmet-
ric-residues mod-M, let 3; := (z;)m and thus define
a tuple 8. Evidently

) =m [x]* =u 0,

so there is a natnum K with [B]? = K M.
Could each 3; be zero? Well, if M divided each z;,
then M? o [x]? = MP. So M ¢ P, contradicting that

M € [2..P). Thus . To show that ,

note we have strict inequality |3;] < %, since M is

dd. Th
? OB < 4 M = MM

So our task is to produce a tuple z st. [z]? = KP.

BigMelding. Define y by (12a).
each of yo,y3,y4 is =7 0. And

Y1 =M [[X]]Q = MP =M 0.

Courtesy (12),

Thus z = ﬁy is an integer-tuple. Moreover

[2* = 37 - (B - [x]?
= 52 KM-MP = KP.

Now ain’t that Nifty! ¢
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SOTS to Dirichlet

Krishna Alladi and George Andrews sketched to me
(over coffee) a proof of a special case of Dirichlet's
theorem on Arithmetic Progressions. It shows that
P := 47 + 1 has ooly many primes. (They don’t know
the author of the proof.) The tool we need is

Fix a SOTS N, and let q be the product of
14:  all the ANEG primes (with multiplicity) that
divide N. Then q is a perfect square.

L.e, each ANEG prime dividing a SOTS must divide it
to an even power.

Producing a new 4P0OSs prime. Given a finite multiset S
of 4P0s primes, we will produce a new 4P0OS prime.
Define

o = TJI(S) and

N = 12420 = 1+40%.

Every divisor of ¢ is coprime to N, so ISTShow that
N has a 4Pos prime-divisor. FTSOC, suppose every
prime-divisor of N is 4ANEG. By (14), then, N is a
perfect square. Hence N and 402 are squares differing
by 1. But the the only such pair is (1,0). Yet 402 is
not zero, since o > [[(@) = 1, so 402 > 4. ¢
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