

Smith Normal Form and Integer solutions to linear equations

Jonathan L.F. King
 University of Florida, Gainesville FL 32611-2082, USA
 squash@ufl.edu
 27 March, 2024 (at 16:55)

In this tract, $\text{GCD}(0, \dots, 0)$ is zero; this, since every integer divides zero.

All matrices (and vectors) are integer-valued,^{♥1} unless specified otherwise. So a square matrix \mathbf{R} is *invertible*^{♥1} IFF $\text{Det}(\mathbf{R}) \in \{\pm 1\}$.

For two, say, 3×5 matrices \mathbf{A} and \mathbf{B} , write:

- $\mathbf{A} \sim \mathbf{B}$, read “ \mathbf{A} is *row equivalent* to \mathbf{B} ”;
- $\mathbf{A} \stackrel{c}{\sim} \mathbf{B}$, read “ \mathbf{A} is *column equiv.* to \mathbf{B} ”;
- $\mathbf{A} \stackrel{rc}{\sim} \mathbf{B}$, read “ \mathbf{A} is *rowcol equivalent* to \mathbf{B} ”;

if there exist *invertible* matrices $\mathbf{R} \stackrel{3 \times 3}{\sim}$ and $\mathbf{C} \stackrel{5 \times 5}{\sim}$ such that, respectively,

$$\mathbf{R}\mathbf{A} = \mathbf{B}; \quad \mathbf{A}\mathbf{C} = \mathbf{B}; \quad \mathbf{R}\mathbf{A}\mathbf{C} = \mathbf{B}.$$

Smith Normal Form

An $\mathbf{r} \times \mathbf{c}$ matrix \mathbf{G}

$$5: \quad \begin{bmatrix} \delta_1 & & & & 0 \\ & \delta_2 & & & 0 \\ & & \ddots & & \vdots \\ & & & \ddots & 0 \\ & & & & \delta_m & 0 \end{bmatrix} \quad (\text{Here, } m := \text{Min}(\mathbf{r}, \mathbf{c}). \text{ In this example, } \mathbf{c} \text{ equals } \mathbf{r} + 1. \text{ All unshown entries are zero.})$$

is in *Smith form* if its only non-zero entries –the *pivot-values*– are on its main-diagonal. (Zeros are allowed on the main-diagonal). *Smith form* requires that the matrix be \mathbb{Z} -valued, and that all non-zero values on the diagonal occur *before* the zeros. Let $\pi = \pi(\mathbf{G})$ denote the number of pivots (non-zero values).

Our $\mathbf{r} \times \mathbf{c}$ matrix \mathbf{G} is in *Smith normal form*

$$6: \quad \begin{bmatrix} \delta_1 & & & & 0 \\ & \ddots & & & \vdots \\ & & \delta_\pi & & \vdots \\ 0 & \dots & \dots & 0 & \dots & 0 \end{bmatrix} \quad (\text{In this example, } m = \mathbf{r} \text{ and } \pi = \mathbf{r} - 1. \text{ Thus } \delta_m \text{ is necessarily 0.})$$

if, in addition, the pivots-values are positive *and*

$$7: \quad \delta_1 \bullet \dots \bullet \delta_{\pi-1} \bullet \delta_\pi \bullet \dots \bullet \delta_m.$$

(This divisibility-condition forces zeros on the diagonal to occur last.)

^{♥1} More generally, our matrices' entries come from a *euclidean domain*, ED . An *invertible* \mathbf{R} has $\text{Det}(\mathbf{R}) \in \text{Units}(ED)$. For row operations, we may: *Add any ED-multiple of a row to another; Multiply a row by any ED-unit.* Ditto for column-ops.

Elementary row operations. Applied to an $\mathbf{r} \times \mathbf{c}$

matrix Γ , the (elementary) row-operations^{♥1} are

a: Exchanging two rows.

b: Adding a \mathbb{Z} -multiple of one row to another.

c: Multiplying a row by -1 .

Applying a row-op to Γ produces $\mathbf{E}\Gamma$, where \mathbf{E} is an $\mathbf{r} \times \mathbf{r}$ *elementary matrix*. Notice that $\text{Det}(\mathbf{E})$ is ± 1 , since we are allowed to multiply a row only^{♥1} by -1 .

Analogously, there are the *column operations*. Applying a col-op to Γ produces $\Gamma\widehat{\mathbf{E}}$, where $\widehat{\mathbf{E}}$ is an $\mathbf{c} \times \mathbf{c}$ elementary matrix.

Applying j –many row-ops and k –many col-ops to Γ produces a matrix

$$\mathbf{G} := \mathbf{R}\Gamma\mathbf{C}, \quad \text{where } \mathbf{R} := \mathbf{E}_j \cdots \mathbf{E}_2 \mathbf{E}_1 \quad \text{and } \mathbf{C} := \widehat{\mathbf{E}}_1 \widehat{\mathbf{E}}_2 \cdots \widehat{\mathbf{E}}_k.$$

This \mathbf{R} is an integer matrix with $\text{Det}(\mathbf{R}) \in \{\pm 1\}$. Ditto \mathbf{C} . These are the *bookkeeping* matrices; our \mathbf{R} keeps track of the (cumulative) row-ops, and \mathbf{C} keeps track of the col-ops. Converting Γ to \mathbf{G} via elem. row-ops and col-ops manifests *rowcol-equivalence*.

It turns out that each matrix Γ is rowcol-equivalent to a *unique* Smith-Normal-Form matrix. We write this as $\mathbf{G} := \text{SNF}(\Gamma)$.

8: Smith Normal Form Thm. *Each matrix Γ is rowcol-equiv to some SNF-matrix, \mathbf{G} . Moreover, the SNF is unique. (I.e, no two distinct SNFs are rowcol-equiv.)* \diamond

Existence of SNF. Applying Lemma 10, below, to our $\mathbf{r} \times \mathbf{c}$ matrix Γ , yields an integer α_1 and matrix \mathbf{B} with

$$\dagger: \quad \Gamma \stackrel{rc}{\sim} \begin{bmatrix} \alpha_1 & 0 & 0 & \cdots & 0 \\ 0 & \ddots & & & \\ \vdots & & \mathbf{B} & & \\ 0 & & & \ddots & \\ & & & & \alpha_m \end{bmatrix}.$$

By induction on the dimensions of a matrix, our

$$\ddagger: \quad \mathbf{B} \stackrel{rc}{\sim} \begin{bmatrix} \alpha_2 & \cdots & & \\ & \ddots & & \\ & & \alpha_m & \end{bmatrix}, \quad \text{where } m := \text{Min}(\mathbf{r}, \mathbf{c}).$$

Finally, the rowcol equivalence of (\ddagger) can be done *inside* of (\dagger) , thanks to the zeros in the first row and first column of $\text{RhS}(\dagger)$. Consequently

$$\Gamma \stackrel{rc}{\sim} \begin{bmatrix} \alpha_1 & \alpha_2 & \cdots & \\ & \ddots & & \\ & & \alpha_m & \end{bmatrix}.$$

Our last obligation to to arrange divisibility. Apply [Lemma 9](#) to the 1:2 submatrix (meaning, the 2×2 matrix formed by rows and columns 1 and 2) of $\begin{bmatrix} \alpha_1 & \cdots & \alpha_m \end{bmatrix}$. Now apply [Lemma 9](#) to 1:3, then 1:4, and continue up to the 1:m submatrix. Letting $g := \text{GCD}(\alpha_1, \dots, \alpha_m)$, we have shown that

$$\Gamma \xrightarrow{rc} \begin{bmatrix} g & & \\ & \beta_2 & \\ & \ddots & \\ & & \beta_m \end{bmatrix},$$

where each β number is an integer multiple of g . Now proceed inductively on the β -submatrix. \diamond

9: Lemma. Suppose $\alpha, \beta \in \mathbb{Z}$. Then

$$\begin{bmatrix} \alpha & 0 \\ 0 & \beta \end{bmatrix} \xrightarrow{rc} \begin{bmatrix} g & 0 \\ 0 & \ell \end{bmatrix},$$

where $g := \text{GCD}(\alpha, \beta)$ and $\ell := \text{LCM}(\alpha, \beta)$. \diamond

Proof. Since \mathbb{Z} is a Euclidean domain, there exist integers S, T st. $S\alpha + T\beta = g$. Thus

$$\begin{bmatrix} \alpha & 0 \\ 0 & \beta \end{bmatrix} \xrightarrow{c} \begin{bmatrix} \alpha & S\alpha \\ 0 & \beta \end{bmatrix} \xrightarrow{r} \begin{bmatrix} \alpha & S\alpha + T\beta \\ 0 & \beta \end{bmatrix} \xrightarrow{c} \begin{bmatrix} g & \alpha \\ \beta & 0 \end{bmatrix}.$$

Take integers J, K with $\alpha = -Jg$ and $\beta = Kg$. Then

$$\begin{bmatrix} g & \alpha \\ \beta & 0 \end{bmatrix} \xrightarrow{c} \begin{bmatrix} g & \alpha + Jg \\ \beta & J\beta \end{bmatrix} = \begin{bmatrix} g & 0 \\ \beta & J\beta \end{bmatrix} \xrightarrow{r} \begin{bmatrix} g & 0 \\ \beta - Kg & J\beta \end{bmatrix} = \begin{bmatrix} g & 0 \\ 0 & JKg \end{bmatrix}.$$

And $-JKg = \frac{-Jg \cdot Kg}{g} = \frac{\alpha\beta}{g} = \pm\ell$. So negate column-two if need be. \diamond

10: Lemma. Suppose A is an $r \times c$ matrix with $r, c \geq 1$. Then

$$A \xrightarrow{rc} \begin{bmatrix} \alpha & 0 & \cdots & 0 \\ 0 & & & \\ \vdots & & & \\ 0 & & & \end{bmatrix} B$$

for some integer α and $[r-1] \times [c-1]$ matrix B . \diamond

Proof. Write $A = [a_{ij}]_{i,j}$. Suppose we have a position $\sigma = (i_0, j_0)$ where $a_\sigma \neq 0$. For a *different* position on the same column, $\tau = (i, j_0)$ with $i \neq i_0$, divide a_σ into a_τ to get a quotient and remainder (integers):

$$a_\sigma = Q \cdot a_\tau + R, \quad \text{with } |R| < |a_\sigma|.$$

Subtracting $Q \cdot \text{Row}(i_0, A)$ from $\text{Row}(i, A)$ yields a new matrix $A' \xrightarrow{r} A$ with $|a'_\tau| < |a'_\sigma|$.

For each psn $\tau \in \text{ColOrRow}(\sigma)$ with $\tau \neq \sigma$, we can subtract a multiple of σ 's row or column, obtaining a

11: New matrix $A' \xrightarrow{rc} A$ for which $\forall \tau \in \text{ColOrRow}(\sigma)$ with $\tau \neq \sigma$: $|a'_\tau| < |a'_\sigma|$.

Iterating. Let $\text{Min}(A)$ be the minimum of $|a_\sigma|$, taken over all positions σ for which $a_\sigma \neq 0$.

To prove the lemma, WLOG $\text{Min}(A) \neq 0$. Apply the following procedure.

i: Set $\mu := \text{Min}(A)$ and pick σ with $|a_\sigma| = \mu$.

ii: Apply (11) to produce a matrix $A' \xrightarrow{rc} A$ with $0 < \text{Min}(A') \leq \mu$.

iii: If $\text{Min}(A') = \mu$, then **Stop!** Else, set $A := A'$, and go to step (i).

We *will* eventually **Stop**, since the μ -numbers form a decreasing sequence of posints. When we stop, we have, for the current position σ , that

$$\text{Min}(A') = \text{Min}(A) = |a_\sigma|.$$

But operation (11) forces *all* the other entries in σ 's row and col to have smaller absolute value than a_σ . So the only way that (11) could have *failed* to lower the matrix's $\text{Min}()$, is if

$$\forall \tau \in \text{ColOrRow}(\sigma) \text{ with } \tau \neq \sigma : a'_\tau = 0.$$

And this says that σ is a *pivot-position* for A . Simply swap rows and swap columns so that the pivot is now in position $(1, 1)$. Voila RhS(10). \diamond

Setting-up uniqueness of SNF. Imagine an $r \times c$ matrix A . There are $\binom{r}{3}$ many ²² tripletons $\mathcal{R} \subset [1..r]$, and $\binom{c}{3}$ many tripletons $\mathcal{C} \subset [1..c]$. Let $A_{\mathcal{R} \times \mathcal{C}}$ denote the induced 3×3 submatrix. Thus

$$S_3^A := \left\{ \text{Det}(A_{\mathcal{R} \times \mathcal{C}}) \mid \mathcal{R} \subset [1..r] \text{ is a tripleton, and so is } \mathcal{C} \subset [1..c] \right\}$$

²²This $\binom{r}{3}$ is the *binomial coefficient* “ r choose 3”. It is the number of ways of choosing 3 objects from r -many distinct objects. E.g, $\binom{5}{3}$ equals 10.

is a set of integers. Our goal is to show that

$$\mathcal{G}_3^A := \text{GCD}(\mathcal{S}_3^A)$$

is an *invariant* of row-column equivalence.

12: Invariance Lemma. Consider matrices $A \xrightarrow{rc} B$. Then $\mathcal{G}_k^A = \mathcal{G}_k^B$, for each $k = 1, 2, 3, \dots$. \diamond

Pf of uniqueness. Courtesy (13†), sequence $(\mathcal{G}_k^A)_{k=1}^m$ determines the $(\delta_k)_{k=1}^m$ sequence. \spadesuit

Commentary. Although $\mathbf{G} := \text{SNF}(A)$ is unique, there can be *many* pairs (\mathbf{R}, \mathbf{C}) such that \mathbf{RAC} equals \mathbf{G} . Extreme cases are $A := \mathbf{I}$, or A is the zero-matrix. \square

Pf. WELOG $k = 3$. WELOG, we obtained B from A

by adding $98 \cdot \text{Row}(A, 7)$ to $\text{Row}(A, 5)$.

So ISTShow that $\mathcal{G}_3^A \bullet \mathcal{G}_3^B$; for by symmetry, then, $\mathcal{G}_3^A \bullet \mathcal{G}_3^B$. BTWay, we've done a row-op, so the set \mathcal{C} plays no essential role. Hence, let $A_{\mathcal{R}}$ and $B_{\mathcal{R}}$ mean $A_{\mathcal{R} \times \mathcal{C}}$ and $B_{\mathcal{R} \times \mathcal{C}}$, for some particular choice of \mathcal{C} .

Consider a tripleton $\mathcal{R} \subset [1..r]$. If $\mathcal{R} \not\ni 5$, then $B_{\mathcal{R}} = A_{\mathcal{R}}$.

In contrast, suppose $\mathcal{R} \ni 5$. If $\mathcal{R} \ni 7$, then

$$\text{Det}(B_{\mathcal{R}}) = \text{Det}(A_{\mathcal{R}}).$$

Now suppose $\mathcal{R} \not\ni 7$. Writing \mathcal{R} as $\{5, i, i'\}$, then,

$$\text{Det}(B_{\mathcal{R}}) = \text{Det}(A_{\mathcal{R}}) + 98 \cdot \text{Det}(A_{\{7, i, i'\}}).$$

And \mathcal{G}_3^A divides both $\text{Det}(A_{\mathcal{R}})$ and $\text{Det}(A_{\{7, i, i'\}})$.

In all three cases, we have that $\mathcal{G}_3^A \bullet \text{Det}(B_{\mathcal{R}})$. \spadesuit

13: Coro.: Uniqueness of SNF. For an $r \times c$ matrix A , let $m := \text{Min}(r, c)$. Let \mathbf{G} be some SNF of A , as in (6). And let $\pi := \text{Rank}(A)$, i.e, the number of pivots in \mathbf{G} .

Then A has only one SNF, since

For each $k = 1, 2, \dots, m$:

13†: $\mathcal{G}_k^A \stackrel{\text{note}}{=} \mathcal{G}_k^G$ equals the product $\delta_1 \cdot \delta_2 \cdots \delta_k$.

In particular $\mathcal{G}_1^A \bullet \dots \bullet \mathcal{G}_m^A$. Indeed, the ratios

$$13\ddagger: \quad \frac{\mathcal{G}_2^A}{\mathcal{G}_1^A} \bullet \frac{\mathcal{G}_3^A}{\mathcal{G}_2^A} \bullet \dots \bullet \frac{\mathcal{G}_\pi^A}{\mathcal{G}_{\pi-1}^A}. \quad \diamond$$

Pf of (13†). Our \mathbf{G} is as in (6) and (7). To compute, say, \mathcal{G}_3^G , take a tripleton $\mathcal{R} = \{i, i', i''\}$ with $i < i' < i''$. For $\text{Det}(G_{\mathcal{R} \times \mathcal{C}})$ to be non-zero, necessarily $\mathcal{C} = \mathcal{R}$. Thus $\text{Det}(G_{\mathcal{R} \times \mathcal{C}})$ equals $\delta_i \cdot \delta_{i'} \cdot \delta_{i''}$. Now use (7). \spadesuit

A system of linear equations over \mathbb{Z}

(Matrices are required to be integer-valued.) Consider a matrix-equation of the form

$$14: \quad \overset{r \times c}{\Gamma} \cdot \overset{c \times 1}{\Sigma} = \overset{r \times 1}{\Upsilon}.$$

The **coefficient matrix** is Γ , and Υ is a target matrix. We want to describe the set (it will turn out to be a \mathbb{Z} -lattice) of target matrices. And given a target, we seek the set of **solution matrices** Σ for (14).

Here is the logic. There may be many solutions, Σ , to $\boxed{\Gamma S = \Upsilon}$, one of which is Σ . But this *augmented* system

$$\begin{aligned} \Gamma \cdot S &= \Upsilon \quad \text{and} \\ I \cdot S &= \Sigma \end{aligned}$$

(where I represents an identity matrix) has the *unique* solution $S := \Sigma$. We solve for S using row and column operations. We'll then discover “free variables” which allow us to describe *all* solns S to $\Gamma S = \Upsilon$.

Sequences of matrices. Initialize matrices

$$R_0 := \overset{r \times r}{I}, \quad G_0 := \overset{r \times c}{\Gamma}, \quad C_0 := \overset{c \times c}{I}$$

$$\text{and column-vectors } S_0 := \overset{c \times 1}{\Sigma}, \quad U_0 := \overset{r \times 1}{\Upsilon},$$

Row&column operations will modify these, always retaining that

$$1_n, 2_n: \quad G_n S_n = U_n \quad \text{and} \quad U_n = R_n \Upsilon.$$

$$3_n, 4_n: \quad C_n S_n = \Sigma \quad \text{and} \quad G_n = R_n \Gamma C_n.$$

The Row&col ops will be effectuated by elementary matrices E with integer entries and $\text{Det}(E) \in \{\pm 1\}$, i.e in $\text{Units}(\mathbb{Z})$.

Row operations. A row-op matrix $\overset{r \times r}{E}$ updates the matrix-sequences as follows:

$$\begin{aligned} 1, 2: \quad \overset{G_{n+1}}{\overbrace{E G_n}} S_n &= \overset{U_{n+1}}{\overbrace{E U_n}} \quad \text{and} \quad \overset{U_{n+1}}{\overbrace{E U_n}} = \overset{R_{n+1}}{\overbrace{E R_n}} \Upsilon. \\ 4: \quad &\text{and} \quad \overset{U_{n+1}}{\overbrace{E G_n}} = \overset{R_{n+1}}{\overbrace{E R_n}} \Gamma C_n. \end{aligned}$$

The other matrices retain their value, i.e $C_{n+1} := C_n$.

Column ops. A column-op $\overset{c \times c}{E}$ updates like this:

$$\begin{aligned} 1: \quad \overset{G_{n+1}}{\overbrace{G_n E}} \overset{S_{n+1}}{\overbrace{E^{-1} S_n}} &= U_n \quad \text{and} \\ 3, 4: \quad \overset{C_{n+1}}{\overbrace{C_n E}} \overset{S_{n+1}}{\overbrace{E^{-1} S_n}} &= \Sigma \quad \text{and} \quad \overset{G_n E}{\underbrace{G_{n+1}}} = R_n \Gamma \overset{C_n E}{\underbrace{C_{n+1}}}. \end{aligned}$$

Result. We rowcol-reduce $G_0 = \Gamma$ to a Smith Form. Supposing this happens at $n=57$, I use boldface letters to denote

$$\begin{aligned} R &:= R_{57}, & G &:= G_{57}, & C &:= C_{57} \\ S &:= S_{57}, & U &:= U_{57}. \end{aligned}$$

I henceforth use “ ∞ ” to denote this last stage “57”.

Since we preserved $([1, 2, 3, 4]_n)$, we now have

$$\begin{aligned} 1_\infty, 2_\infty: \quad GS &= U \quad \text{and} \quad U = R\Upsilon. \\ 3_\infty, 4_\infty: \quad CS &= \Sigma \quad \text{and} \quad G = R\Gamma C. \end{aligned}$$

The improvement over $([1, 2, 3, 4]_0)$ is that, now, the (new) coefficient matrix G is in Smith-form, e.g (6).

Pivot- and free-columns. Let π be the number of pivots in G ; note that $\pi = \text{Rank}(\Gamma)$. Use $\varphi := c - \pi$ for the number of *free columns*.

Decompose G into its lefthand π -many columns, call it $\overset{r \times \pi}{D}$, and its righthand φ -many columns:

$$15: \quad G = \left[\begin{array}{c|c} \overset{\pi}{\overbrace{\delta_1 \dots \delta_\pi}} & \overset{\varphi}{\overbrace{\begin{matrix} 0 & 0 \\ \vdots & \vdots \\ 0 & 0 \end{matrix}}} \\ \hline 0 & \dots 0 \end{array} \right]$$

$$16: \quad C = [\quad P \quad | \quad F \quad]$$

Split C into its *pivot part* $\overset{c \times \pi}{P}$, and its *free part* $\overset{c \times \varphi}{F}$.

Divisibility. From $([1, 2]_\infty)$ and (15), an integer column-vector Υ admits a solution Σ **iff** for each $i = 1, 2, \dots, m$: $\text{Row}(i, R) \cdot \Upsilon$ is divisible by δ_i .

Another way to state this is:

$$17: \quad \begin{aligned} \forall i \in [1.. \pi]: \text{Row}(i, R) \cdot \Upsilon &\mid \delta_i, \quad \text{and} \\ \forall i \in (\pi..r]: \text{Row}(i, R) \cdot \Upsilon &= 0. \end{aligned}$$

Lattices

These matrices will give us explicit \mathbb{Z} -bases for the target lattice and the nullspace lattice.

18: Nullspace Theorem. *The \mathbb{Z} -lattice of vectors Σ such that $\Gamma\Sigma = \mathbf{0}_{r \times 1}$, is φ -dimensional. And the set of columns of \mathbf{F} is a \mathbb{Z} -basis for the nullspace-lattice. \diamond*

Proof. Set $\Upsilon := \mathbf{0}_{r \times 1}$ in $([1, 2, 3, 4]_\infty)$. Thus $\mathbf{U} = \mathbf{0}_{r \times 1}$. So \mathbf{S} solves (1_∞) exactly when the top π -many entries in \mathbf{S} are zero; the rest can vary freely. The resulting set of products $\Sigma = \mathbf{CS}$ is exactly the set of products

$$\mathbf{F} \cdot \begin{bmatrix} s_{\pi+1} \\ \vdots \\ s_c \end{bmatrix}, \quad \begin{array}{l} \text{as the } \varphi\text{-many entries} \\ s_{\pi+1}, s_{\pi+2}, \dots, s_{c-1}, s_c \\ \text{vary freely.} \end{array}$$

Finally, the \mathbf{F} -columns are linearly-independent, since those of \mathbf{C} are, since those of \mathbf{C}_0 were. \diamond

A \mathbb{Z} -basis for the set of targets. (Below, use \mathbf{M}^t to indicate \mathbf{M} -transpose.) We will show that

$$19: \quad \Gamma\mathbf{P} = \mathbf{R}^{-1}\mathbf{D}, \quad \text{i.e. } \mathbf{R}^{\text{r}\times\text{r}} \mathbf{P}^{\text{r}\times\text{c}} \mathbf{D}^{\text{c}\times\pi} = \mathbf{D}^{\text{r}\times\pi},$$

on our way to establishing our main goal.

20: Target Thm. *The set of Υ for which there exists Σ with $\Gamma\Sigma = \Upsilon$, is a π -dim'el \mathbb{Z} -lattice. A \mathbb{Z} -basis for this lattice is the set of columns of $\Gamma\mathbf{P}$, i.e. of $\mathbf{R}^{-1}\mathbf{D}$. \diamond*

Proof of (20) and (19). Recall that $\Upsilon = \Gamma\Sigma = \Gamma\mathbf{CS}$.

We get each target as a product

$$\dagger: \quad \Gamma\mathbf{C} \cdot \begin{bmatrix} s_1 & \dots & s_\pi & 0 & \dots & 0 \end{bmatrix}^t,$$

for one particular choice of integer-tuple s_1, \dots, s_π . Why? —because the last φ -many components of \mathbf{S} are mapped by \mathbf{C} , bijectively, to the nullspace of Γ .

Courtesy (16), this set of products (\dagger) is the set

$$\ddagger: \quad \Gamma\mathbf{P} \cdot \begin{bmatrix} s_1 & \dots & s_\pi \end{bmatrix}^t.$$

So we've established (20) —*except* that we still need to prove that $\mathbf{R}^{-1}\mathbf{D}$ equals $\Gamma\mathbf{P}$.

Each \mathbf{U} vector arises as a product

$$\mathbf{G} \cdot \begin{bmatrix} s_1 & \dots & s_\pi & 0 & \dots & 0 \end{bmatrix}^t,$$

thanks to (1_∞) and (15). And this product equals

$$\mathbf{D} \cdot \begin{bmatrix} s_1 & \dots & s_\pi \end{bmatrix}^t.$$

Hence $\Upsilon = \mathbf{R}^{-1}\mathbf{U} = \mathbf{R}^{-1}\mathbf{D} \begin{bmatrix} s_1 & \dots & s_\pi \end{bmatrix}^t$, and this gives the same mapping $(s_1, \dots, s_\pi) \mapsto \Upsilon$ that $\Gamma\mathbf{P}$ does. Consequently, $\mathbf{R}^{-1}\mathbf{D}$ minus $\Gamma\mathbf{P}$ is the zero-operator —and so they are equal. \diamond

Mapping targets to solns. So the $\mathbf{r} \times \pi$ matrix

$$21: \quad \mathbf{T} := \Gamma\mathbf{P} \stackrel{\text{fact}}{=} \mathbf{R}^{-1}\mathbf{D}$$

maps “ s -tuples” $[s_1 \dots s_\pi]^t$ to targets, bijectively, via lefthand multiplication. Thus, in the space of *rational* matrices, our \mathbf{T} has a *lefthand* inverse. \heartsuit^3

We pick a particular LH-inverse $\mathbf{T}^* := \mathbf{D}^* \cdot \mathbf{R}$ by specifying the following rational lefthand-inverse to \mathbf{D} :

$$22: \quad \mathbf{D}^* := \begin{bmatrix} 1/\delta_1 & & 0 \\ & \ddots & \vdots \\ & & 1/\delta_\pi & 0 \end{bmatrix} \in \text{MAT}_{\pi \times \mathbf{r}}(\mathbb{Q}).$$

It satisfies \heartsuit^4 that $\mathbf{D}^* \mathbf{D} = \mathbf{I}^{\pi \times \pi}$.

In consequence, lefthand-multiplication by *rational* $\mathbf{c} \times \mathbf{r}$ matrix

$$23: \quad \mathbf{M} := \mathbf{P} \mathbf{D}^* \mathbf{R}$$

carries each target Υ to a particular solution Σ for which $\Gamma\Sigma = \Upsilon$. For each target Υ , then,

$$24: \quad \left\{ \Sigma \mid \Gamma\Sigma = \Upsilon \right\} = \mathbf{M}\Upsilon + \mathbf{F} \begin{bmatrix} s_{\pi+1} \\ s_{\pi+2} \\ \vdots \\ s_c \end{bmatrix},$$

as $s_{\pi+1}, \dots, s_{c-1}, s_c$ vary over the integers.

We call \mathbf{M} our *selector matrix*. It is determined by our particular reduction of Γ to Smith Form.

If we reduced Γ to Smith *Normal* form, then each quotient $\varepsilon_i := \delta_\pi / \delta_i$ is a posint. So

$$\mathbf{M} = \frac{1}{\delta_\pi} \cdot \widehat{\mathbf{M}}, \quad \text{where the product}$$

$$25: \quad \widehat{\mathbf{M}} := \mathbf{P} \begin{bmatrix} \varepsilon_1 & & 0 & \dots & 0 \\ & \varepsilon_2 & & 0 & \dots & 0 \\ & & \ddots & \vdots & \vdots & \vdots \\ & & & \varepsilon_\pi & 0 & \dots & 0 \end{bmatrix} \mathbf{R}$$

\heartsuit^3 Its set of rational LH-inverses is an $[\mathbf{r} - \pi]$ -dimensional “flat”, i.e., an affine subspace.

\heartsuit^4 Reverse-product $\mathbf{D} \mathbf{D}^*$ will not equal $\mathbf{I}^{\mathbf{c} \times \mathbf{c}}$, unless $\pi \stackrel{\text{happens}}{=} \mathbf{c}$.

is an *integer* matrix.

Filename: Problems/NumberTheory/snfs_lin_eqns.latex
As of: Tuesday 01Feb2022. Typeset: 27Mar2024 at 16:55.