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In this tract, GCD(0, . . . , 0) is zero; this, since every
integer divides zero.

All matrices (and vectors) are integer-valued,♥1

unless specified otherwise. So a square matrix R is
invertible♥1 IFF Det(R) ∈ {±1}.

For two, say, 3×5 matrices A and B, write:

A
r∼ B , read “A is row equivalent to B”;

A
c∼ B , read “A is column equiv. to B”;

A
r c∼∼ B , read “A is rowcol equivalent to B”;

if there exist invertible matrices
3×3
R and

5×5
C such that,

respectively,

RA = B ; AC = B ; RAC = B .

Smith Normal Form

An r×c matrix G
δ1 0

δ2 0
. . .

...
δm 0


(Here, m := Min(r, c). In
this example, c equals r + 1.
All unshown entries are zero.)

5:

is in Smith form if its only non-zero entries –the
pivot-values– are on its main-diagonal. (Zeros are
allowed on the main-diagonal). Smith form requires that
the matrix be Z-valued, and that all non-zero values
on the diagonal occur before the zeros. Let π = π(G)
denote the number of pivots (non-zero values).

Our r×c matrix G is in Smith normal form
δ1 0

. . .
...

δπ
...

0 . . . . . . 0 . . . 0


(In this example, m = r

and π = r−1. Thus δm is
necessarily 0.)

6:

if, in addition, the pivots-values are positive and

δ1 •| . . . •| δπ−1 •| δπ •| · · · •| δm .7:

(This divisibility-condition forces zeros on the diagonal to occur last.)

♥1More generally, our matrices’ entries come from a euclidean
domain, ED. An invertible R has Det(R) ∈ Units(ED). For
row operations, we may: Add any ED-multiple of a row to
another; Multiply a row by any ED-unit. Ditto for column-ops.

Elementary row operations. Applied to an r×c
matrix Γ, the (elementary) row-operations♥1 are

a: Exchanging two rows.

b: Adding a Z-multiple of one row to another.

c: Multiplying a row by 1.

Applying a row-op to Γ produces EΓ, where E is an
r×r elementary matrix. Notice that Det(E) is ±1,
since we are allowed to multiply a row only♥1 by 1.

Analogously, there are the column operations.
Applying a col-op to Γ produces ΓÊ, where Ê is an
c×c elementary matrix.

Applying j–many row-ops and k–many col-ops to Γ
produces a matrix

G := RΓC ,
where R := Ej · · ·E2E1

and C := Ê1Ê2 · · ·Êk .

This R is an integer matrix with Det(R) ∈ {±1}.
Ditto C. These are the bookkeeping matrices; our R
keeps track of the (cumulative) row-ops, and C keeps
track of the col-ops. Converting Γ to G via elem.
row-ops and col-ops manifests rowcol-equivalence.

It turns out that each matrix Γ is rowcol-equivalent
to a unique Smith-Normal-Form matrix. We write
this as G := SNF (Γ).

8: Smith Normal Form Thm. Each matrix Γ is rowcol-
equiv to some SNF-matrix, G. Moreover, the SNF is
unique. (I.e, no two distinct SNFs are rowcol-equiv.) ♦

Existence of SNF. Applying Lemma 10, below, to our
r×c matrix Γ, yields an integer α1 and matrix B with

Γ
r c∼∼

[
α1 0 0 ··· 0
0... B
0

]
.†:

By induction on the dimensions of a matrix, our

B
r c∼∼

[
α2 . . .

αm

]
, where m := Min(r, c).‡:

Finally, the rowcol equivalence of (‡) can be done
inside of (†), thanks to the zeros in the first row and
first column of RhS(†). Consequently

Γ
r c∼∼

[
α1

α2 . . .
αm

]
.
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Our last obligation to to arrange divisibility. Apply
Lemma 9 to the 1:2 submatrix (meaning, the 2×2 matrix

formed by rows and columns 1 and 2) of
[
α1 . . .

αm

]
. Now

apply Lemma 9 to 1:3, then 1:4, and continue up to
the 1:m submatrix. Letting g := GCD(α1, . . . , αm),
we have shown that

Γ
r c∼∼

[ g
β2 . . .

βm

]
,

where each β number is an integer multiple of g. Now
proceed inductively on the β-submatrix. �

9: Lemma. Suppose α, β ∈ Z. Then[
α 0
0 β

]
r c∼∼
[
g 0
0 `

]
,

where g := GCD(α, β) and ` := LCM(α, β). ♦

Proof. Since Z is a Euclidean domain, there exist
integers S, T st. Sα+ Tβ = g. Thus[

α 0
0 β

]
c∼
[
α Sα
0 β

]
r∼
[
α Sα+Tβ
0 β

]
c∼
[
g α
β 0

]
.

Take integers J,K with α = Jg and β = Kg. Then[
g α
β 0

]
c∼
[
g α+Jg
β Jβ

]
=
[
g 0
β Jβ

]
r∼
[

g 0
β−Kg Jβ

]
=
[
g 0
0 JKg

]
.

And JKg = Jg·Kg
g = αβ

g = ±`. So negate column-
two if need be. �

10: Lemma. Suppose A is an r×c matrix with r, c ≥ 1.
Then

A
r c∼∼

[
α 0 ··· 0
0... B
0

]

for some integer α and [r−1]× [c−1] matrix B. ♦

Proof. Write A = [ ai,j ]i,j. Suppose we have a posi-
tion σ=(((i0, j0))) where aσ 6= 0. For a different position
on the same column, τ=(((i, j0))) with i 6= i0, divide aσ
into aτ to get a quotient and remainder (integers):

aσ = Q · aτ + R , with |R| < |aσ|.

Subtracting Q ·Row(i0,A) from Row(i,A) yields a new
matrix A′

r∼ A with |a′τ | < |a′σ|.
For each psn τ ∈ ColOrRow(σ) with τ 6= σ, we can

subtract a multiple of σ’s row or column, obtaining a

New matrix A′
r c∼∼ A for which ∀τ ∈

ColOrRow(σ) with τ 6= σ: |a′τ | < |a′σ|.
11:

Iterating. Let Min(A) be the minimum of |aσ|,
taken over all positions σ for which aσ 6= 0.

To prove the lemma, WLOG Min(A) 6= 0. Apply
the following procedure.

i : Set µ := Min(A) and pick σ with |aσ| = µ.

ii : Apply (11) to produce a matrix A′
r c∼∼ A with

0 < Min(A′) ≤ µ.

iii : If Min(A′) = µ, then Stop! Else, set A := A′, and
go to step (i).

We will eventually Stop, since the µ-numbers form
a decreasing sequence of posints. When we stop, we
have, for the current position σ, that

Min(A′) = Min(A) = |aσ| .

But operation (11) forces all the other entries in σ’s
row and col to have smaller absolute value than aσ.
So the only way that (11) could have failed to lower
the matrix’s Min(), is if

∀τ ∈ ColOrRow(σ) with τ 6= σ : a′τ = 0 .

And this says that σ is a pivot-position for A. Simply
swap rows and swap columns so that the pivot is now
in position (((1, 1))). Voila RhS(10). �

Setting-up uniqueness of SNF. Imagine an
r×c matrix A. There are

(r
3

)
many♥2 tripletons

R ⊂ [1 .. r] , and
(c
3

)
many tripletons C ⊂ [1 .. c]. Let

AR×C denote the induced 3×3 submatrix. Thus

SA3 :=
{

Det(AR×C )
∣∣∣ R ⊂ [1 .. r] is a tripleton,
and so is C ⊂ [1 .. c]

}
♥2This

(
r
3

)
is the binomial coefficient “r choose 3”. It is the

number of ways of choosing 3 objects from r–many distinct
objects. E.g,

(
5
3

)
equals 10.

Filename: Problems/NumberTheory/snf_lin-eqns.latex



Prof. JLF King Smith Normal Form Page 3 of 6

is a set of integers. Our goal is to show that

GA3 := GCD
(
SA3
)

is an invariant of row-column equivalence.

12: Invariance Lemma. Consider matrices A
r c∼∼ B.

Then GAk = GBk, for each k = 1, 2, 3, . . . . ♦

Pf. WELOG k = 3. WELOG, we obtained B from A

by adding 98 · Row(A, 7) to Row(A, 5).

So ISTShow that
�� ��GA3 •| GB3 ; for by symmetry, then,

GA3 |• GB3. BTWay, we’ve done a row-op, so the set
C plays no essential role. Hence, let AR and BR mean
AR×C and BR×C , for some particular choice of C .

Consider a tripleton R ⊂ [1 .. r]. If R 63 5, then
BR = AR .

In contrast, suppose
�� ��R 3 5 . If R 3 7, then

Det(BR) = Det(AR) .

Now suppose R 63 7. Writing R as {5, i, i′}, then,

Det(BR) = Det(AR) + 98 ·Det(A{7,i,i′}) .

And GA3 divides both Det(AR) and Det(A{7,i,i′}).

In all three cases, we have that GA3 •| Det(BR). �

13: Coro.: Uniqueness of SNF. For an r×c matrix A,
let m := Min(r, c). Let G be some SNF of A, as in (6).
And let π := Rank(A), i.e, the number of pivots in G.

Then A has only one SNF, since

For each k = 1, 2, . . . ,m:

GAk
note
=== GGk equals the product δ1 · δ2 · · · δk.

13†:

In particular GA1 •| . . . •| GAm. Indeed, the ratios

GA2
GA1
•| G

A
3

GA2
•| . . . •| G

A
π

GAπ−1
.13‡: ♦

Pf of (13†). Our G is as in (6) and (7). To compute,
say, GG3 , take a tripleton R={i, i′, i′′} with i < i′ < i′′.
For Det(GR×C ) to be non-zero, necessarily C = R.
Thus Det(GR×C ) equals δi · δi′ · δi′′ . Now use (7). �

Pf of uniqueness. Courtesy (13†), sequence
(((
GAk
)))
m
k=1

determines the (((δk)))
m
k=1 sequence. �

Commentary.Although G := SNF (A) is unique, there
can be many pairs (((R,C))) such that RAC equals G.
Extreme cases are A := I, or A is the zero-matrix. �
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A system of linear equations over Z
(Matrices are required to be integer-valued.) Consider a
matrix-equation of the form

r×c
Γ ·

c×1
Σ =

r×1
Υ .14:

The coefficient matrix is Γ, and Υ is a target ma-
trix. We want to describe the set (it will turn out to be
a Z-lattice) of target matrices. And given a target, we
seek the set of solution matrices Σ for (14).

Here is the logic. There may be many solutions, S,
to

�� ��ΓS = Υ , one of which is Σ. But this augmented
system

Γ · S = Υ and
I · S = Σ

(where I represents an identity matrix) has the unique so-
lution S := Σ. We solve for S using row and column
operations. We’ll then discover “free variables” which
allow us to describe all solns S to ΓS = Υ.

Sequences of matrices. Initialize matrices

R0 :=
r×r
I , G0 :=

r×c
Γ , C0 :=

c×c
I

and column-vectors S0 :=
c×1
Σ , U0 :=

r×1
Υ ,

Row&column operations will modify these, always re-
taining that

GnSn = Un and Un = RnΥ .1n, 2n:
CnSn = Σ and Gn = RnΓCn .3n, 4n:

The Row&col ops will be effectuated by elementary
matrices E with integer entries and Det(E) in {±1},
i.e in Units(Z).

Row operations. A row-op matrix
r×r
E updates

the matrix-sequences as follows:

Gn+1︷︸︸︷
EGn Sn =

Un+1︷︸︸︷
EUn and

Un+1︷︸︸︷
EUn =

Rn+1︷︸︸︷
ERn Υ .1, 2:

and EGn︸︷︷︸
Gn+1

= ERn︸︷︷︸
Rn+1

ΓCn .4:

The other matrices retain their value, i.e Cn+1 := Cn.

Column ops. A column-op
c×c
E updates like this:

Gn+1︷︸︸︷
GnE

Sn+1︷ ︸︸ ︷
E 1Sn = Un and1:

CnE︸︷︷︸
Cn+1

E 1Sn︸ ︷︷ ︸
Sn+1

= Σ and GnE︸︷︷︸
Gn+1

= RnΓ CnE︸︷︷︸
Cn+1

.3, 4:

Result. We rowcol-reduce G0=Γ to a Smith
Form. Supposing this happens at n=57, I use boldface
letters to denote

R := R57 , G := G57 , C := C57

S := S57 , U := U57 .

I henceforth use “∞” to denote this last stage “57”.
Since we preserved ([1, 2, 3, 4]n), we now have

GS = U and U = RΥ .1∞, 2∞:
CS = Σ and G = RΓC .3∞, 4∞:

The improvement over ([1, 2, 3, 4]0) is that, now, the
(new) coefficient matrix G is in Smith-form, e.g (6).

Pivot- and free-columns. Let π be the number of
pivots in G; note that π = Rank(Γ). Use ϕ := c− π
for the number of free columns.

Decompose G into its lefthand π–many columns,

call it
r×π
D , and its righthand ϕ–many columns:

G =

D︷ ︸︸ ︷ δ1 . . .
δπ

0 ... 0

∣∣∣∣∣∣
All zero︷ ︸︸ ︷
0 0...

...
0 0
0 ... 0

]
15:

C =
[
P

∣∣∣ F ]
16:

Split C into its pivot part
c×π
P , and its free part

c×ϕ
F .

Divisibility. From ([1, 2]∞) and (15), an integer
column-vector Υ admits a solution Σ iff for each
i = 1, 2, . . . ,m: Row(i,R) ·Υ is divisible by δi.

Another way to state this is:

∀i ∈ [1 .. π] : Row(i,R) ·Υ |• δi , and
∀i ∈ (π .. r] : Row(i,R) ·Υ = 0 .

17:
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Lattices

These matrices will give us explicit Z-bases for the
target lattice and the nullspace lattice.

18: Nullspace Theorem. The Z-lattice of vectors Σ
such that ΓΣ = 0r×1, is ϕ-dimensional. And the set
of columns of F is a Z-basis for the nullspace-lattice.♦

Proof. Set Υ := 0r×1 in ([1, 2, 3, 4]∞). Thus U = 0r×1.
So S solves (1∞) exactly when the top π–many entries
in S are zero; the rest can vary freely. The resulting
set of products Σ = CS is exactly the set of products

F ·
[ sπ+1

...
sc

]
,

as the ϕ–many entries
sπ+1, sπ+2, . . . , sc−1, sc
vary freely.

Finally, the F-columns are linearly-independent, since
those of C are, since those of C0 were. �

A Z-basis for the set of targets. (Below, use Mt

to indicate M-transpose.) We will show that

ΓP = R 1D , i.e
r×r
R

r×c
Γ

c×π
P =

r×π
D ,19:

on our way to establishing our main goal.

20: Target Thm. The set of Υ for which there exists Σ
with ΓΣ = Υ, is a π-dim’al Z-lattice. A Z-basis for
this lattice is the set of columns of ΓP, i.e, of R 1D.♦

Proof of (20) and (19). Recall that Υ = ΓΣ = ΓCS.
We get each target as a product

ΓC ·
[
s1 . . . sπ 0 . . . 0

]t
,†:

for one particular choice of integer-tuple s1, · · · , sπ.
Why? —because the last ϕ–many components of S
are mapped by C, bijectively, to the nullspace of Γ.

Courtesy (16), this set of products (†) is the set

ΓP ·
[
s1 . . . sπ

]t
.‡:

So we’ve established (20) —except that we still need
to prove that R 1D equals ΓP.

Each U vector arises as a product

G ·
[
s1 . . . sπ 0 . . . 0

]t
,

thanks to (1∞) and (15). And this product equals

D ·
[
s1 . . . sπ

]t
.

Hence Υ = R 1U = R 1D
[
s1 . . . sπ

]t
, and this

gives the same mapping (((s1, . . . , sπ))) 7→ Υ that ΓP
does. Consequently, R 1D minus ΓP is the zero-
operator —and so they are equal. �

Mapping targets to solns. So the r× π matrix

T := ΓP
fact
=== R 1D21:

maps “s-tuples ”
[
s1 . . . sπ

]t
to targets, bijectively,

via lefthand multiplication. Thus, in the space of
rational matrices, our T has a lefthand inverse.♥3

We pick a particular LH-inverse T• := D• ·R by
specifying the following rational lefthand-inverse to D:

D• :=

[
1/δ1 0

. . .
...

1/δπ 0

]
∈ Matπ×r(Q) .22:

It satisfies♥4 that D•D =
π×π
I .

In consequence, lefthand-multiplication by rational
c× r matrix

M := PD•R23:

carries each target Υ to a particular solution Σ for
which ΓΣ = Υ. For each target Υ, then,{

Σ
∣∣∣ ΓΣ = Υ

}
= MΥ + F

[ sπ+1
sπ+2
...
sc

]
,24:

as sπ+1, . . . , sc−1, sc vary over the integers.
We call M our selector matrix. It is determined

by our particular reduction of Γ to Smith Form.
If we reduced Γ to Smith Normal form, then each

quotient εi := δπ/δi is a posint. So

M =
1

δπ
· M̂ , where the product

M̂ := P

 ε1 0 ... 0
ε2 0 ... 0

. . .
...

...
επ 0 ... 0

R25:

♥3Its set of rational LH-inverses is an [r−π]–dimensional
“flat”, i.e, an affine subspace.
♥4Reverse-product DD• will not equal

c×c
I , unless π happens

====== c.
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is an integer matrix.
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