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In this tract, GCD(0, ..., 0) is zero; this, since every
integer divides zero.

All matrices (and vectors) are integer-valued,!
unless specified otherwise. So a square matrix R is
invertible”! IFF Det(R) € {+1}.

For two, say, 3x5 matrices A and B, write:

A~LB, read “A is row equivalent to B”;
A<B, read “A is column equiv. to B
A S B , read “A is rowcol equivalent to B”;

3x3 5X5
if there exist invertible matrices R and C such that,

respectively,

RA — B: AC = B: RAC = B.

Smith Normal Form

An rxc matrix G

01 0
52 0 (Here, m := Min(r,c). In

5: . . this example, ¢ equals r + 1.
: : All unshown entries are zero.)

dm O

is in Smith form if its only non-zero entries —the
pivot-values— are on its main-diagonal.
allowed on the main-diagonal). Smith form requires that
the matrix be Z-valued, and that all non-zero values
on the diagonal occur before the zeros. Let m = m(G)
denote the number of pivots (non-zero values).

(Zeros are

Our rxc matrix G is in Smith normal form

01 0
. (In this example, m = r
6: ’ and m = r—1. Thus 6y, is
Sr necessarily 0.)
0O ... ... 0 ... 0

if, in addition, the pivots-values are positive and

7: T R R R R

(This divisibility-condition forces zeros on the diagonal to occur last.)

“IMore generally, our matrices’ entries come from a euclidean
domain, ED. An invertible R has Det(R) € Units(ED). For
row operations, we may: Add any ED-multiple of a row to
another; Multiply a row by any ED-unit. Ditto for column-ops.

Webpage http://people.clas.ufl.edu/squash/

Elementary row operations. Applied to an rxc
matrix I', the (elementary) row-operations”! are

a: Exchanging two rows.
b: Adding a Z-multiple of one row to another.
c: Multiplying a row by -1.

Applying a row-op to I' produces EI', where E is an
rxr elementary matrixz. Notice that Det(E) is £1,
since we are allowed to multiply a row only”! by -1.

Analogously, there are the column operations.
Applying a col-op to I' produces FE, where E is an
cxc elementary matrix.

Applying j—many row-ops and k—many col-ops to I'
produces a matrix

where R = Ej i -E2E1
and C := E1E2 . Ek .

This R is an integer matrix with Det(R) € {£1}.
Ditto C. These are the bookkeeping matrices; our R
keeps track of the (cumulative) row-ops, and C keeps
track of the col-ops. Converting I' to G via elem.
row-ops and col-ops manifests rowcol-equivalence.

It turns out that each matrix I' is rowcol-equivalent
We write

G = RIC,

to a wunique Smith-Normal-Form matrix.

this as G := SNF(T").

&: Smith Normal Form Thm. Each matrix I" is rowcol-
equiv to some SNF-matrix, G. Moreover, the SNF is
unique. (I.e, no two distinct SNFs are rowco]—equiv.) O

Existence of SNF. Applying Lemma 10, below, to our
rxc matrix I, yields an integer ar; and matrix B with

a1 000
iE r K [ v B ] .
0
By induction on the dimensions of a matrix, our
rc a2
It B ~~ ,  where m := Min(r, c).
Om
Finally, the rowcol equivalence of (f) can be done

inside of (), thanks to the zeros in the first row and
first column of RhS(f). Consequently

aq
@2
5 o

T 42
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Our last obligation to to arrange divisibility. Apply
Lemma9 to the 1:2 submatrix (meaning, the 2x2 matrix
formed by rows and columns 1 and 2) of [a] o } . Now
apply Lemma9 to 1:3, then 1:4, and continue up to
the 1:m submatrix. Letting ¢ :== GCD(a1, ..., am),
we have shown that

g
F’I"CV[&' ]
' Bm

where each 8 number is an integer multiple of g. Now
proceed inductively on the S-submatrix. ¢

9: Lemma. Suppose «, 3 € Z. Then
0] rc 0
(58] < [8¢].
where g .= GCD(a, ) and ¢ := LCM(«, f3). O
Proof.  Since Z is a Euclidean domain, there exist

integers S, T st. Sa+ T = g. Thus
(58] <[5 %]~ [3 757 ] < [55].

Take integers J, K with a = -Jg and g = K¢g. Then

B8] <5957 =[5 5]~ [ako 53] = [8 k.

And -JKg = % = %3 = +/. So negate column-
two if need be. ¢

10: Lemma. Suppose A is an rxc matrix withr,c > 1.

Then

@00

0
for some integer o and [r—1] x [c—1] matrix B.  {
Proof.  Write A = [ai.j]u. Suppose we have a posi-

tion o=(io, jo) where a, # 0. For a different position
on the same column, 7=(i,jo) with i # iy, divide a,
into a; to get a quotient and remainder (integers):

Q-a; + R,

ay = with |R] < |as|.

Smith Normal Form

Prof. JLF King

Subtracting Q-Row(ip, A) from Row(i, A) yields a new
matrix A’ L A with |a’| < |a]|.

For each psn 7 € ColOrRow (o) with 7 # o, we can
subtract a multiple of ¢’s row or column, obtaining a

New matrix A’ << A for which V7 €
ColOrRow (o) with T # o: |a.| < |al]|.

Iterating. Let Min(A) be the minimum of |a,/,
taken over all positions ¢ for which a, # 0.

To prove the lemma, WLOG Min(A) # 0. Apply
the following procedure.

i: Set = Min(A) and pick o with |as| = p.

ii: Apply (11) to produce a matrix A’ L% A with
0 < Min(A’) < p.

ii: If Min(A”) = p, then Stop! Else, set A .= A’, and
go to step (i).

We will eventually Stop, since the p-numbers form
a decreasing sequence of posints. When we stop, we
have, for the current position o, that

Min(A’) = Min(A) = las].

But operation (11) forces all the other entries in o’s
row and col to have smaller absolute value than a,.
So the only way that (11) could have failed to lower
the matrix’s Min(), is if

V7 € ColOrRow(o) with 7 #£0: a,. = 0.

And this says that o is a pivot-position for A. Simply
swap rows and swap columns so that the pivot is now
in position (1,1). Voila RhS(10). ¢

Setting-up uniqueness of SNF. Imagine an
rxc matrix A. There are (3) many”? tripletons
2 C [1.r], and (5) many tripletons ¢ C [1..c|. Let
A,%?x% denote the induced 3x3 submatrix. Thus

Sh = {Det(Aﬂx%”)

Z C [1.r] is a tripleton,
and sois ¢ C [1..c]

“2This (3) is the binomial coefficient “r choose 3”. It is the

number of ways of choosing 3 objects from r-many distinct
objects. E.g, (;) equals 10.

Filename: Problems/NumberTheory/snf_lin-eqns.latex
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is a set of integers. Our goal is to show that
Gh == GCD(SH)
is an tnvariant of row-column equivalence.

12: Invariance Lemma. Consider matrices A ~~ B.
Then QA = QB,,, for each k =1.2,3,.... O

Pf. WELOG k = 3. WELOG, we obtained B from A

by adding 98 - Row(A,7) to Row(A,b5).

So ISTShow that ; for by symmetry, then,

g/;; o g%. BTWay, we’ve done a row-op, so the set
% plays no essential role. Hence, let Ay and By mean
Azxw and Bgyy, for some particular choice of €.

Consider a tripleton % C [1..r]. If # # 5, then
B%J = AJ/}J

In contrast, suppose . If # > 7, then
Det(B#) = Det(Az) .
Now suppose % # 7. Writing Z as {5,i,i'}, then,
Det(Bz) = Det(Ag) + 98- Det(Ag7;iy) -

And G4 divides both Det(A) and Det(Ag7iin)-
In all three cases, we have that G ¢ Det(By). 4

13: Coro.: Uniqueness of SNF.  For an rxc matrix A,

let m := Min(r, c). Let G be some SNF of A, as in (6).

And let  := Rank(A), i.e, the number of pivots in G.
Then A has only one SNF, since

For each k =1,2,... m:

131— g% note

GG equals the product &y - 83 - - - 0.
In particular GA o ... o GA .. Indeed, the ratios
g5 4 93 gh

gh b ar

134 N

Pfof (13t). Our G is as in (6) and (7). To compute,
say, G$, take a tripleton Z={i,i,i"} with i < i’ <i".
For Det(Ggx¢) to be non-zero, necessarily ¢ = %.
Thus Det(G g« ) equals 0; - 0y - §;7. Now use (7). 4

Smith Normal Form
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Pf of uniqueness. Courtesy (131), sequence (G%)™,
determines the (d;),~, sequence. ¢

Commentary. Although G = SNF(A) is unique, there
can be many pairs (R, C) such that RAC equals G.
Extreme cases are A :=1, or A is the zero-matrix. [J

Filename: Problems/NumberTheory/snf_lin-eqns.latex
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A system of linear equations over Z

(Matrices are required to be integer—valued.) Consider a

matrix-equation of the form

rxc cx1 rx1

14: r- = 7.

The coefficient matrix is I', and Y is a target ma-
triz. We want to describe the set (it will turn out to be
a Z-lattice) of target matrices. And given a target, we
seek the set of solution matrices ¥ for (14).

Here is the logic. There may be many solutions, S,

to , one of which is ¥. But this augmented

system
r-s =17 and
I.S = X

(where T represents an identity matrix) has the unique so-
lution S := 3. We solve for S using row and column
operations. We’'ll then discover “free variables” which
allow us to describe all solns S to I'S = 7T.

Sequences of matrices. Initialize matrices

rXr rxc cXc
RO = 1 s GO = T N CO = 1
cx1 rx1
and column-vectors Sp := X, Uy = T,

Row&column operations will modify these, always re-
taining that

1,,2,:
3n, 4n:

G,S, = U, and U, = R,T.
CnSn by and G, R.I'C, .

The Rowé&col ops will be effectuated by elementary
matrices E with integer entries and Det(E) in {£1},
i.e in Units(Z).

rXxr
Row operations. A row-op matrix E updates

the matrix-sequences as follows:

Gn+1 Un+1 Un+1 Rn+1
~ = ~ = ~ = ~ =
1,2 EG,S, = EU, and EU, = ER,T.
and EG, = ER,I'C,.
~—~— ~—~—
Gn+l Rn+1

The other matrices retain their value, i.e C,,41 = C,,.

A system of linear equations over 7Z

Prof. JLF King

cXc

Column ops. A column-op E updates like this:

Gn+1 Sn+1
—r
1: G,EE'S, = U, and
3,4+ C,EE1S, =% and G,E = R,I'C,E.
—~——— ~—~
Cn+1 Sn+1 G7L+1 Cn+1
Result. We rowcol-reduce Go=I" to a Smith

Form. Supposing this happens at n=>57, I use boldface
letters to denote

R = R57, G = G57, C = C57
S U = U57.

Ss7.,

I henceforth use “c0” to denote this last stage “57”.
Since we preserved ([1,2,3,4],), we now have

and U = RY.
and G = RIC.

loo, 2008 GS =U
3oy doot CS =X

The improvement over ([1,2,3,4]y) is that, now, the
(new) coefficient matrix G is in Smith-form, e.g (6).

Let 7 be the number of
pivots in G; note that 7 = Rank(I"). Use p :=c— =
for the number of free columns.

Pivot- and free-columns.

Decompose G into its lefthand m—many columns,
rXm
callit D , and its righthand ¢p-many columns:

D
All zero
o )
15: G=1| ", 5]
0 ..0] 0..0

16: C =

X cXp

CXT
Split C into its pivot part P, and its free part F .

Divisibility. From ([1,2]s) and (15), an integer

column-vector Y admits a solution > iff for each

i=1,2,...,m: Row(i,R) 7 is divisible by 4;.
Another way to state this is:

Vie[l.n]: Row(i,R)-Y o &, and
Vie (r.r]: Row(i,R)-T = 0.

Filename: Problems/NumberTheory/snf_lin-eqns.latex
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Lattices

These matrices will give us explicit Z-bases for the
target lattice and the nullspace lattice.

18: Nullspace Theorem.  The Z-lattice of vectors %
such that I'S = Oy, is ¢-dimensional. And the set
of columns of F is a Z-basis for the nullspace-lattice.(

Proof. Set T := 0px1 in ([1,2,3,4]oc). Thus U = 0pxg.
So S solves (1) exactly when the top m—many entries
in S are zero; the rest can vary freely. The resulting
set of products X = CS is exactly the set of products

the @—many entries

St4+1 as
F' E 5 Sr+1,Sm42,--

Sc vary freely.

.,8c—1,Sc

Finally, the F-columns are linearly-independent, since
those of C are, since those of Cy were. ¢

A Z-basis for the set of targets. (Below, use M*
to indicate M-transpose.) We will show that

-1 IXr rxXc CXm rXm
190 TP=R'D, ie RT P = D,

on our way to establishing our main goal.

20: Target Thm. The set of Y for which there exists X
with I'YX) =T, is a w-dim’al Z-lattice. A Z-basis for
this lattice is the set of columns of I'P, i.e, of R'D.{

Proof of (20) and (19). Recall that T = I'S = T'CS.
We get each target as a product

t
e FC-[sl...sﬂO...O} ,

for one particular choice of integer-tuple si,--- , sx.
Why? —because the last p—many components of S
are mapped by C, bijectively, to the nullspace of I'.

Courtesy (16), this set of products () is the set
t
o]

So we’ve established (20) —exzcept that we still need
to prove that R™' D equals I'P.
Each U vector arises as a product

o]t,

18 FP-[sl...

G'{Sl...

sr 0...

Lattices

rational matrices, our T has a lefthand inverse.
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thanks to (1o) and (15). And this product equals
D- {31 sﬂr .

Hence YT = R'U = RD [51 sﬂ]t, and this
gives the same mapping (s1,...,87) — Y that T'P
does. Consequently, R D minus I'P is the zero-
operator —and so they are equal. ¢

Mapping targets to solns. So the r x 7 matrix

fact

21: T=TP = R'D
t
maps “s-tuples” [31 sﬂ} to targets, bijectively,

Thus, in the space of
Q3

via lefthand multiplication.

We pick a particular LH-inverse T®* := D*-R by
specifying the following rational lefthand-inverse to D:
[1/51 0

3] € MAT,;«r(Q).

22: D°* = . :
1/6x 0

X7

s
It satisfies”* that D*D = 1T .
In consequence, lefthand-multiplication by rational
c X r matrix

23: M = PD*R
carries each target T to a particular solution ¥ for
which 'Y = T. For each target T, then,
St+1
S
2. {z|rE=1} = M1+ F[ ;“17

Sc

as Sgiql,---,Sc—1,Sc vary over the integers.

We call M our selector matrix. It is determined
by our particular reduction of I" to Smith Form.

If we reduced I' to Smith Normal form, then each
quotient &; := d,/4; is a posint. So

1 -
M = 5 M, where the product
25: €1 0.. 0
'\/7| _ P £9 : 0... 0 R
Ex . 0.. 0

“3Tts set of rational LH-inverses is an [r—n]-dimensional

“flat”, i.e, an affine subspace.
cXc
“4Reverse-product D D® will not equal I , unless

happens

Filename: Problems/NumberTheory/snf_lin-eqns.latex



Page 6 of 6 Lattices Prof. JLF King

is an integer matrix.
Filename: Problems/NumberTheory/snf_lin-eqns.latex
As of:  Tuesday 01Feb2022. Typeset: 27Mar2024 at 16:55.

Filename: Problems/NumberTheory/snf_lin-eqns.latex



