

Staple!

Ord: _____

e

Degree- N polynomial $y = y(t)$ satisfies

$$\dagger: \quad 4y^2 - t^9 y' = 15t^9 + 4t^2.$$

Thus $N = \dots$. [Hint: Don't compute y ; just the polynomial's degree.]

f

DiffOperators $\mathbf{P}, \mathbf{Q}, \mathbf{R}, \mathbf{S}$ are defined as

$$\mathbf{P}(f) := f(3) \cdot f', \quad \mathbf{Q}(f) := \cos(3) \cdot f^{(3)},$$

$$\mathbf{R}(f) := [\cos(3) \cdot f] + f'', \quad \mathbf{S}(f) := \cos(3) + [3f'].$$

Then ... \mathbf{P} is linear: T F. \mathbf{Q} is linear: T F.
 \mathbf{R} is linear: T F. \mathbf{S} is linear: T F.

g

Write $\cos(-2i)$, which is real, ITOF $\exp()$ and add/sub/mul/div: $\cos(-2i) = \dots$

And $\cos(-2i)$ lies in circle the correct interval

$$(-\infty, -\frac{1}{5}] \quad (-\frac{1}{5}, \frac{1}{5}] \quad (\frac{1}{5}, 2] \quad (2, 5] \quad (5, 15] \quad (15, 45] \quad (45, \infty)$$

End of S-Class

S1: Show no work.

a

Prof. King wears bifocals, and cannot read small handwriting. Circle one:
 True! Yes! Who??

b

A soln to $[h'' - 3h'](x) = 14 - 6x$ is polynomial $h(x) = \dots$. Using parameters α and β , then, the general solution to $[h'' - 3h'](x) = 14 - 6x$ is

$$h_{\alpha, \beta}(x) = \dots$$

And the h with $h(0) = 0$ and $h'(0) = 0$ is $h(x) = \dots$

c

The simplest soln to $y'' + 2y' + y = [t^2 + 1]/e^t$ is $y(t) = \dots$

d

Fnc $y_\beta(t) := \dots$ is the general soln to $\frac{dy}{dt} = 8t^3 \cdot [y - 5]$. [SoV]

The particular $y()$ with $y(0) = 8$ is $y(t) := \dots$. And this

function has $y(1) = \dots$

S1: _____ 125pts

S2: _____ 60pts

Total: _____ 185pts

S2: Show no work.