

S1: Show no work.

b DE $[x\text{e}^y \cdot \frac{dy}{dx}] + [8x^4 + 4\text{e}^y] = 0$ is not, alas, *exact*. Happily, multiplying both sides by (non-constant) fnc

$W(x) =$ gives a *new* DE which is exact. Did you *Check*?

c For $t > 0$, fnc $y_\alpha(t) :=$ is the gen.soln to $ty' + 3y = t^7$. [Hint: FOLDE.]

d Let $U := 3 - 2i$ and $W := 4 + i$. The gen.soln to a CCLDE is $y_{\alpha,\beta}(t) = \alpha \cdot \text{e}^{Ut} + \beta \cdot \text{e}^{Wt}$. The CCLDE that every such $y()$ satisfies is

$$= 0.$$

.....
 [Hint: Fill-in the blank with the appropriate sum of derivatives-of- y times various constants.]

e The simplest soln to $y'' + 2y' + y = [t^2 + 1]/\text{e}^t$ is $y(t) =$

f DiffOperators **P**, **Q**, **R**, **S** are defined as

$$\begin{aligned} \mathbf{P}(f) &:= f(3) \cdot f', & \mathbf{Q}(f) &:= \cos(3) \cdot f^{(3)}, \\ \mathbf{R}(f) &:= [\cos(3) \cdot f] + f'', & \mathbf{S}(f) &:= \cos(3) + [3f']. \end{aligned}$$

Then ... **P** is linear: *T F*. **Q** is linear: *T F*.
R is linear: *T F*. **S** is linear: *T F*.

S2: Show no work.

 Degree- N polynomial $y = y(t)$ satisfies

$$\dagger: \quad 4y^2 - t^9 y' = 15t^9 + 4t^2.$$

Thus $N = \underline{\quad \dots \quad}$. [Hint: Don't compute y ; just the polynomial's degree.]

S1: _____ 120pts

S2: _____ 30pts

Total: _____ 150pts