

Welcome. Write **DNE** in a blank if the described object does not exist or if the indicated operation cannot be performed. Write expressions unambiguously e.g., “ $1/a + b$ ” should be bracketed either $[1/a] + b$ or $1/[a + b]$. (Be careful with negative signs!)

Use “ $f(x)$ notation” when writing fncs; in particular, for trig and log fncs. E.g., write “ $\sin(x)$ ” rather than the horrible $\sin x$ or $[\sin x]$.

Recall $\llbracket x \downarrow K \rrbracket := x \cdot [x-1] \cdot [x-2] \cdots [x-[K-1]]$, is read as “ N falling-factorial K ”.

S1: Show no work.

a Prof. King wears bifocals, and cannot read small handwriting. Circle one:
True! Yes! Who??

b $[\mathbf{D} - 3\mathbf{I}]^6(x^9 \cdot e^{3x}) =$

c A soln to $[f'' - 3f'](x) = 14 - 6x$ is polynomial $f(x) =$ Using parameters α and β , then, the general solution to $[h'' - 3h'](x) = 14 - 6x$ is

$h_{\alpha,\beta}(x) =$

And the h with $h(0) = 0$ and $h'(0) = 0$ is $h(x) =$

d Fnc $y_\beta(t) :=$ is the general soln to $\frac{dy}{dt} = 8t^3 \cdot [y-5]$. [FOLDE or SoV]

The particular $y()$ with $y(0) = 8$ is $y(t) :=$ And this

function has $y(1) =$

e Degree- N polynomial $y = y(t)$ satisfies

$$\dagger: \quad 4y^2 - t^9 y' = 15t^9 + 4t^2.$$

Thus $N =$ [Hint: Don't compute y ; just the polynomial's degree.]

S2: Show no work.

f DiffOperators **P, Q, R, S** are defined as

$$\mathbf{P}(f) := f(3) \cdot f', \quad \mathbf{Q}(f) := \cos(3) \cdot f^{(3)}, \\ \mathbf{R}(f) := [\cos(3) \cdot f] + f'', \quad \mathbf{S}(f) := \cos(3) + [3f'].$$

Then... **P** is linear: $\mathcal{T} F$. **Q** is linear: $\mathcal{T} F$.
R is linear: $\mathcal{T} F$. **S** is linear: $\mathcal{T} F$.

g Write $\cos(-2i)$, which is real, ITOf $\exp()$ and add/sub/mul/div: $\cos(-2i) =$
And $\cos(-2i)$ lies in circle the correct interval
 $(-\infty, \frac{-1}{5}]$ $(\frac{-1}{5}, \frac{1}{5}]$ $(\frac{1}{5}, 2]$ $(2, 5]$ $(5, 15]$ $(15, 45]$ $(45, \infty)$

End of S-Class

S1: 120pts

S2: 40pts

Total: 160pts