

Welcome: *This is a practice prereq exam. We'll have the actual prereq exam (which will be shorter), in class, on Friday, 24Aug.* Please bring paper for computations.

The prereq counts only 4%–8% of the course grade. It's purpose is for you to self-evaluate if you have the prerequisite knowledge for the COMBINATORICS 1 course. If you've forgotten a little, that's fine, but if you are shaky on a lot of material, then you should consider using this semester to review, and taking the course in Spring.

S1: Show no work. NOTE: The inverse-fnc of g , often written as g^{-1} , is *different* from the reciprocal fnc $1/g$. E.g, suppose g is invertible with $g(-2) = 3$ and $g(3) = 8$: Then $g^{-1}(3) = -2$, yet $[1/g](3) \stackrel{\text{def}}{=} 1/g(3) = 1/8$.

Please write **DNE** in a blank if the described object does not exist or if the indicated operation cannot be performed.

ℓ1 The slope of line $3[y - 5] = 2[x - 2]$ is .
Point $(-4, y)$ lies on this line, where $y =$.

ℓ2 Line $y = [M \cdot x] + B$ owns points $(4, 3)$ and $(-2, 5)$. Hence $M =$ and $B =$.

ℓ3 Line $y = Mx + B$ is orthogonal to $y = \frac{1}{3}x + 2$ and owns $(2, 1)$. So $M =$ and $B =$.

q1 The solutions to $3x^2 = 2 - 2x$ are $x =$.

q2 The four solutions to $[y - 2] \cdot y \cdot [y + 2] = -1/y$ are $y =$.

[Hint: Apply the Quadratic Formula to y^2 .]

e1 $[\sqrt{3}^{\sqrt{2}}]^{\sqrt{8}} =$. $\log_{64}(16) =$.

iv1 Let $y = f(x) := [2 + \sqrt[5]{x}]/3$. Its inverse-function is $f^{-1}(y) =$.

iv2 Suppose g is a fnc with g' never zero. Let h be the inverse-fnc of g . In terms of h , g , g' and x , write a formula for $h'(x) =$.

[Hint: The Chain rule. NOTE: h is NOT $1/g$.]

iv3 Let $g(x) := x^3 - x$. Then $g^{-1}(6) =$.

and $[g^{-1}]'(6) =$.

dq $\frac{d}{dz} \left(\frac{\sin(3z)}{\cos(z+1)} \right) = \frac{f(z)}{g(z)}$ where $f(z) =$.

and $g(z) =$.

DC1 Below, f and g are differentiable fncs with

$$\begin{aligned} f(2) &= 3, & f(3) &= 5, & f'(2) &= 19, & f'(3) &= 17, \\ g(2) &= 11, & g(3) &= 13, & g'(2) &= \frac{1}{2}, & g'(3) &= 7, \\ f(5) &= 43, & g(5) &= 23, & f'(5) &= 41, & g'(5) &= 29. \end{aligned}$$

Define the composition $C := g \circ f$. Then $C(2) =$; $C'(2) =$.

Please write each answer as a product of numbers; **do not** multiply out. [Hint: The Chain rule.]

DC2 For $x > 0$, let $B(x) := x^x$. Its derivative is $B'(x) =$.

[Hint: How is y^z , for $y > 0$, defined in terms of the exponential fnc?]

DC3 For $x > 0$, let $B(x) := x^{\sin(x)}$. Hence its derivative is $B'(x) = B(x) \cdot M(x)$, where $M(x)$ equals

[Hint: How is y^z , for $y > 0$, defined ITOF the exponential fnc?]

DC4 On those x where $\sin(x) > 0$, define $B(x) := [\sin(x)]^x$. Its derivative is $B'(x) =$.

[Hint: How is y^z , for $y > 0$, defined ITOF the exponential fnc?]

Ig1 $\int_2^3 \log(t) dt = \log(R) + K$, where $R =$ is a rational number and $K =$ $\in \mathbb{Z}$. [Hint: IBParts]

Ig2 $\int \frac{t^2}{2^t} dt =$. [Write ITOF $L := \log(2)$.]

Hop By l'Hôpital's thm or other means, please compute

$$\lim_{x \rightarrow 0} \frac{e^x - 1}{3x - 1} = \quad \lim_{x \rightarrow \frac{\pi}{2}} \frac{\sin(2x)}{x - \frac{\pi}{2}} =$$

Paf

Partial-fraction decomposition:

$$\frac{x+1}{x^2+x-2} = \frac{1}{x+2} + \frac{2}{x-1}$$

Sm

Sum $1 + 2 + 3 + \dots + 100 =$

Tel1

Sum $\sum_{k=2}^{\infty} \frac{1}{k[k+2]} = \frac{U}{D}$, where $U =$

and $D =$ are co-prime posints.

[Hint: Telescoping series (several). “Co-prime” means “with no common factor”.]

Tel2

Let $b_n := \exp\left(\frac{4}{n+5}\right) \stackrel{\text{note}}{=} e^{4/[n+5]}$. Then

$$\sum_{n=4}^{\infty} [b_n - b_{n+1}] =$$

[Hint: A real, $+\infty$, $-\infty$ or **DNE** in \mathbb{R} .]

SG1

Compute the sum of this geometric series:

$$\sum_{n=3}^{\infty} [-1]^n \cdot [3/5]^n =$$

SG2

For natural number K , the sum

$$\sum_{n=3}^{3+K} 4^n \text{ equals}$$

$$\text{SG3} \quad \sum_{n=1}^{\infty} r^n = \frac{5}{8}. \text{ So } r = \text{ or } \text{DNE}.$$

[Hint: The sum starts with n at **one**, not zero.]

SC The series $\sum_{k=1}^{\infty} \frac{[-1]^k}{\log(k)}$ (circle one): Diverges,
Converges absolutely, Converges conditionally.

SR Power series $f(x) = \sum_{n=3}^{\infty} \frac{[3x]^n}{n+7}$ has RoC=

S2: Math-Greek alphabet: Please write the **two** missing data of lowercase/uppercase/name. Eg:

“iota: ι alpha: α B: β .” You fill in: ι I A **alpha** β **beta**
 $\Omega: \Omega$ $\Psi: \Psi$ H: H
 $\sigma: \sigma$ $\gamma: \gamma$ $\lambda: \lambda$
theta rho delta mu

End of Sample-S

S1: _____ 180pts

S2: _____ 20pts

Total: _____ 200pts

Print
name _____

Ord: _____

HONOR CODE: *“I have neither requested nor received help on this exam other than from my professor.”*

Signature: _____