

RREF is unique

Jonathan L.F. King

University of Florida, Gainesville FL 32611-2082, USA

squash@ufl.edu

Webpage <http://squash.1gainesville.com/>

23 October, 2023 (at 19:58)

When is a matrix in RREF? In a $B = [b_{i,j}]_{i,j}$ matrix, row- i being **NotAZ** means it is **Not-All-Zero**; let $\text{Col}(i)$ be the column-index of its *leftmost* non-zero entry; thus $b_{i, \text{Col}(i)}$ is the leftmost non-zero entry in row- i .

Our B is in **RREF (reduced row-echelon-form)** if

i: The **NotAZ** rows are above the **All-Zero** rows.

ii: With P denoting the number of **NotAZ** rows, we have

$$\text{Col}(1) < \text{Col}(2) < \dots < \text{Col}(P).$$

iii: For $i = 1, \dots, P$, the *only* non-zero entry in column $\text{Col}(i)$ is at position $(i, \text{Col}(i))$. Moreover $b_{i, \text{Col}(i)} = 1$.

For $i = 1, 2, \dots, P$, we call row- i a **pivot row**, column $\text{Col}(i)$ a **pivot column**, and position $(i, \text{Col}(i))$ a **pivot position**.

The **RREF** of a matrix is unique. However, removing “reduced” gives **row-echelon-form**, and different textbooks have slightly varying definitions of REF. While **RREF** is unique, REF is *not* unique. Nonetheless, useful properties can be read-off from an REF of a matrix. □

See next page...

1: RREF Uniqueness Thm. Consider two matrices A and B in RREF, having the same dimensions and over the same field F . If $A \sim^r B$ [row-equiv.] then $A = B$. \diamond

Key idea. Row-ops (elementary row-operations) do not change linear relations among columns. \square

Proof. FTSO *Contradiction*, suppose $A \neq B$.

Let $\alpha(j)$ denote the j^{th} column of A ; ditto $\beta(j)$ for B . Take index K *smallest* such that $\alpha(K) \neq \beta(K)$.

Let P denote the number of pivot columns that A , hence B (Exer: Why?), has to the *left* of column- K . Write A 's pivot-positions as

$$(1, c_1), (2, c_2), \dots, (P, c_P),$$

where $c_1 < \dots < c_P$ are the column indices.

CASE: Column $\alpha(K)$ is a pivot-column

Since the preceding argument also applies to matrix B , column $\beta(K)$ must itself be a pivot-column (of B , of course).

As $\alpha(K)$ is a pivot-column with P many pivots to its left, necessarily our $\alpha(K)$ equals the transpose of

$$* : \underbrace{[0 \dots 0]}_{P \text{ many}} 1 0 \dots 0.$$

But column $\beta(K)$ is also a pivot column, and it also has P many pivots to *its* left. So $\beta(K)$ equals $(*)$, hence equals $\alpha(K)$; again a contradiction. \spadesuit

Filename: Problems/Algebra/LinearAlg/rref-unique.latex
As of: Friday 05Feb2016. Typeset: 23Oct2023 at 19:58.

CASE: Column $\alpha(K)$ is a non-pivot column

Then $\alpha(K)$ has form $\begin{bmatrix} x_1 \\ \vdots \\ x_P \\ 0 \\ \vdots \\ 0 \end{bmatrix}$. Thus column $\alpha(K)$ is a linear-combination of the pivot-columns to its left, namely

$$\alpha(K) = \sum_{i=1}^P x_i \cdot \alpha(c_i).$$

Recall row-equivalence *preserves* linear relations among columns, [ie., $\text{LNul}(A) = \text{LNul}(B)$] hence

$$\beta(K) = \sum_{i=1}^P x_i \cdot \beta(c_i).$$

But to the left of column- K , matrices A and B *agree*. For each index $j < K$, consequently, $\alpha(j) = \beta(j)$. In particular, each $\alpha(c_i) = \beta(c_i)$. Thus

$$\beta(K) = \sum_{i=1}^P x_i \cdot \alpha(c_i) \stackrel{\text{note}}{=} \alpha(K),$$

contradicting that $\alpha(K)$ is unequal to $\beta(K)$.