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ABSTRACT: In the sense of the Baire Category Theorem
we show that the generic transformation T has roots of
all orders (Rao theorem). The argument appears novel
in that it proceeds by establishing that the set of such
T is not meager —and then appeals to a Zero-One Law.
(Lemma ??.)

On the group Q2 of (invertible measure—preserving) trans-
formations, §?? shows that the squaring map p :
S — 82 is topologically complex in that both the
locally-dense and locally-lacunary points of o are dense.
(Theorem ??.)

The last section, §77?, discusses the relation between
RAO and a recent example of Blair Madore. Answering
a question of the author’s, Madore constructs a trans-
formation with a square-root chain of each finite length,
yet possessing no infinite square-root chain.

A History

A transformation 7' might have a cartesian square
root, T = S*? := S x S, or a composition square
root, T = R? := Ro R; I will henceforth call
composition roots just roots. In a paper which
had a significant impact on Ergodic theory in
the 1970’s and 1980’s, “On the root problem in
ergodic theory”, [?], Don Ornstein constructed a
remarkable transformation 7" with no roots. Then
Dan Rudolph showed, in [?], that the parameters
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of Ornstein’s construction could be tuned to in-
sure that T" was prime —no factors— and therefore
had no cartesian roots. (This was shown indepen-
dently by Ken Berg in [?].) Indeed, Rudolph con-
structed a T' with the stronger property of min-
imal self-joinings, and showed that MSJ implies
primeness and trivial commutant. Later work, [?],
showed that MSJ followed automatically from T
being both mixing and rank-1. The MSJ prop-
erty, and the more general property of simplicity,
have been fruitful for the study of classes of zero-
entropy maps, (7, ?].

Ornstein’s map has no roots “because” it com-
mutes only with its powers. An entirely different
type of rootless T' was constructed in [?] via an al-
gebraic automorphism-extension; the commutant
of this T is uncountable.

The following overview uses topological terms
almost-open, meager, residual (=generic), coarse
topology and BaireCat space. These will be de-
fined further below.

Genericity. What happens generically for
transformations on a Lebesgue probability space
(I, )7  We ask this question with respect to
the standard coarse topology on €2, where (2
is the group —under composition— of (invertible
measure—preserving) transformations on 1.

It follows from the Weak-Closure theorem of [?]
that no rank-1 map has a cartesian square root.
Since RANK-1 is generic,”! only a meager set of
transformations in €2 can have a cartesian square
root.

In contrast, the goal of this article is to show
that possessing composition roots is generic. To

this end, let p.:Q—Q denote the e"-power map
S — Se.

1: RAO Theorem (Roots of All Orders). The set of

“IThis is implicit in [?, P.65-68], and also follows from
the Rohlin lemma. Several equivalent definitions of rank-1
appear in the introduction of [?].
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transformations with roots of all orders,
o0
RAO = () p(9),

is Q-residual. O

It suffices to show that p.(€2) is residual, for
each exponent e. Most of the ideas appear in the
e = 2 case, so we henceforth let p be the squaring
map o, and endeavor to show that

(l:  SQUARES = p(Q), is residual.

The sequel will reduce this (¢1), in a series of
steps, to an assertion ((4). Here is a roadmap.

§Outline

A tool that we need is the following special case
of the Zero-One Law for genericity. In the termi-
nology of [?], a subset P C Q is dynamical if

12 It is isomorphism-invariant: ~ Whenever a
transformation 7" is isomorphic to a T € P,
then 7" itself is in P.

s It is sufficiently measurable: P is an almost-

open subset of €.

2: Zero-One Lemma ([?, P.232]).  Each dynamical
property P C €0 is either meager or residual.

(14 b

Miscellany. Use “x = foo” or “foo = =z
to mean that foo is the definition of sym-
bol . When defining a term, we use a bold-
face italic font, whereas just italics indicates
emphasis. We use the small-caps font to indicate
the set of objects satisfying a property, e.g, RAO,
RANK-1, SQUARES —and, later, WEAKMIXING
and LocDEN.

The Coarse Topology, €, on
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Use A ~ B for the difference of two sets.
Use A A B for the symmetric difference [A \
B]U[B ~\ A]. For real numbers a and b, let [a..))
denote the “interval of integers” [a,b) N Z.

Employ K ¢ L for “K divides L”, and use L lo
K for “L is a multiple of K”.

To indicate a map from a set to itself, we may
write f:XO instead of f: X—X.

Topological Preliminaries

On a set X, a family {W,,}22, of topologies en-
genders the coarsest (fewest open sets) topology, X,
such that each W,, € X. This X is generated by
finite intersections U,, N ... N U,,, where each
U, eW,.

Suppose further, for each X-open set X’ and
point z € X’ that the following holds.

For all sufficiently large n, there is a'W,,-
open set U,, for which z € U,, C X'.

If so, say that “sequence (W,)>, tends to X”
and write W,, 7 X.

For a pseudo-metric d (a symmetric mapping
d: X XX —[0,00) satisfying the triangle inequality, but al-
lowing d(z,z) = 0) and point z € X, use d-Ball.(z)
to mean the set of x for which d(z, z) < e.

Now suppose that d,, is a pseudo-metric on X,
with W, its topology comprising all unions of d,,-
balls. If each d,, is bounded by 1, then topology
X is realized by pseudo-metric

> 1
4: Z?n

The next two headings will develop the requisite
topological notions to prove (¢1).

The Coarse Topology, C, on 2

Since each two non-atomic Lebesgue probability
spaces are isomorphic, henceforth take I to be the
half-open interval [0, 1) with Lebesgue measure p.
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The coarse topology on €2, call it C, is the topol-
ogy in which transformations 7; approach 7" iff:

For each measurable set £ C I

M(T]71(E) A Tﬁl(E)) — 0, as j 0.

Said differently, the coarse topology on €2 is sim-
ply the strong operator topology with each trans-
formation T € €2 regarded as a unitary operator

on £2(11).

A metric m realizing C

In the sequel, let interval mean a non-void half-
open set [a,b) C 1. A partition ) decomposes I
into equal-length subintervals,

Q== {1). LD [520).

called the atoms of (). A partition P refines ()
if each Q-atom A € () is some union of P-atoms.
The formula

5. do(S,T) = A% ;N<Sl(A)AT1(A))

shows that a partition () gives rise to a bound-
ed-by-1 pseudo-metric on 2. Let W denote the
dg-topology on 2.

A given finite list Ey, ..., Ef C I of (measurable)
sets can be e-approximated, taking a k sufficiently
large, by various unions of (Ji-atoms. n Conse-
quently:

??": Sequence (Wgq, )52, tends to C.

Letting d,, denote dg, in (??), the resulting
pseudo-metric m is a metric which realizes the
coarse topology on (2.

6: Lemma.  Our space (£2,C) is a Polish (non-
void, and homeomorphic to a complete separable metric
space) topological group. In particular, each power
map . Is continuous. O

The Baire Necessities
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Sketch of proof. It is not difficult to show that €2
is complete with respect to the metric

T,S — m(T,S)+m(T™, S™).

And this metric still realizes €, since the mapping
S +— S7!is continuous, as now shown: It suffices
to take transformations o;—S and fix a set F,
then establish that o;(E) tends to S(E). But let-
ting A := S(F), note that

n(o;(B) A S(E)) = p(E A 0}'S(E))
= p(S7(A) A 0} (4)),

which certainly goes to zero as j — oc.

To show that the group-multiplication is con-
tinuous, we need only measure convergence on a
fixed set A. To this end, let [, o] abbreviate

p(r(A) Ao (4)).

Fix maps T and S, let E := T (A), and consider
transformations 7, — 1" and o; — S. Evidently

[7i05.75] < [[rj05.T0;]| + [T0;. 7S]
= 7. 7] + u(oj"(B) A S7(E)) .

And these two terms go to zero, as j — oo.
Finally, as detailed in Proposition 77?7, below,
those transformations which permute the atoms
of some partition form a set which is €2-dense and
countable. Hence €2 is separable. (For further
discussion, see [?, pp.62-68].) ¢

The Baire Necessities

Recall that a subset B C X of a topological
space is nowhere-dense if its closure has no in-
terior. Less stringent, B is meager if it equals
some countable union of nowhere-dense sets. Fi-
nally, a subset £ C X is restdual if its comple-
ment X ~\ FE is meager.
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Say that X is a BaireCat space if the conclu-
sion of the Baire Category Theorem holds in this
form:

FEach residual subset of X is dense.

Since €2 is completely metrizable, it is BaireCat."?

For the Zero-One Law to apply to SQUARES,
we need to know that SQUARES fulfills the stated
measurability condition. Say that a subset
B C X is almost-open if it is “almost” equal
to some open set U —in the sense that the sym-
metric difference B A U is meager. It is straight-
forward to show that the almost-open sets form
a sigma-algebra. A fortiori the open sets are al-
most-open, so ALMOSTOPEN includes”? the Borel
sigma-algebra. Here is the non-trivial fact that we
need.

7: Theorem. Each analytic set (the forward image
of a Borel set, under a continuous map between Polish
spaces) Is almost-open. O

Proof. See [?, pp. 482,92]. ¢

This result comes into play as follows. Since p
is continuous, the set of pairs (R,T) with R> =T
is a closed subset of Polish space € x €. And
SQUARES is its continuous image under

QxQ—-Q: (5,7)—T,

the projection map. Thus SQUARES is analytic,
hence almost-open. So by Zero-One, we need but
establish that

(2:  SQUARES is non-meager.

“2A standard term is Baire, rather than BaireCat; alas,
the modifier “Baire” is used inconsistently. It has three dis-
tinct meanings in these usages: “a Baire space”, “a Baire
set”, “a set with the property of Baire”. Unfortunately a
Baire set is not —with the standard terminology— a Baire
space in the induced topology.

“3This inclusion is proper:
shows that

Computing cardinalities

#ALMOSTOPEN = #MEAGER = 28

whereas #BOREL only equals R.

Setting up property a(z, K)
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Our next step is to develop a condition which
guarantees non-meagerness of a continuous image.

Local density. Suppose that f: X—A is a map
between topological spaces. A point z € X is
locally-dense (with respect to f) if:

FEach neighborhood of z has f-image which
is dense in some neighborhood of f(z).

Let LOCDEN(f) denote the set of locally-dense
points. The following neat observation is due to
Randall Dougherty.

8: Dougherty’s Lemma. Consider f: X—A, a con-
tinuous map from a BaireCat space to a topolog-
ical space. If LOCDEN(f) is X-dense, then f(X)
is not A-meager. O

Proof.  Were f(X) meager, then we could cover
it by a union U®I',, of closed sets, each without
interior. Thus each C, = f(T,) is closed, and
U° C), covers X.

The interior, U, of a C,,, has its f-image inside
the closed interiorless set I',,, so no point of U is
locally-dense. Thus C), has no interior, hence is
meager. Consequently X is not BaireCat. ¢

Remark.  The same argument shows that the
f-image of each X-residual set is not A-meager.[]

Setting up property a(z, K)

Topologically, the last tool we need is the lemma
below. The baroqueness of its formulation is
adapted to its use in §77.

Consider a map between topological spaces,

(X, X)—(A L),

as well as topologies W,, X and topologies
X, C L. For a point z € X and positive inte-
ger K, define this property.
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PROPERTY a(z, K): Given a Wi-open set U
z there exists an L-dense set A C A and a K-
open set YT 3 f(z) so that:

o FU) > TNA.

9: Baroque lemma. With notation from imme-
diately above, suppose that a(z,n) holds for in-
finitely many n. Then z is locally-dense for f.

Proof. Fix an arbitrary X-open set Z 3 z.

Among those n fulfilling a(z,n), take n large
enough to produce a W,-open set U for which
z € U C Z. Then take subsets A, T C A as
a(z,n) provides. A fortiori T is L-open, so TNA
is L-dense in T. Taking L-closures, then,

f(Z) o f(U) D TNA DT 3 f(2),

as was desired. ¢

Permutations
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B Combinatorics

The foregoing discussion will allow us to make
“local-density” a purely combinatorial mat-

ter. Henceforth, dj, denotes pseudo-metric dg,
from (7).

Permutations

A permutation of [0 .. K') will be called a K -perm.
If a K-perm 7:[0 .. K)O happens to comprise a sin-
gle cycle —necessarily of length K— then we call 7
a K-cycle. Each K-perm 7 has an associated
interval-exchange map G, € € which rigidly per-
mutes the atoms of partition ()i according to 7.

Specifically, letting A, be the atom [%, ”71 :
14
G (x) —7T}(() [z — £], forz e A,

Call transformation G, a K-shuffle, or just a
shuffle. Evidently if T is a K-shuffle and K di-
vides L, then T is also an L-shuffle.

As an example, take K =5 and T := G, where
7 maps 2 to 0 to 4 to 2, and 7 exchanges 1 and 3.
Then

%t (204) (13)

is the cycle structure of 7. Call (k) also “the 5-
structure of T”. In contrast, the 10-structure
of T splits each cycle into two copies:

(408)(519) (26)(37).

If the K-structure of T is a single cycle then we
call ' a K-solo. The Rohlin lemma or [?, P.65]
implies the following.

10: Proposition. The set of K-solos, with K
ranging over an infinite set of positive integers, is

C-dense in €2. O
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Creating combinatorial roots

Given an L-perm )\, say that an L’-perm p
is a “combinatorial n™ root of \” if L' e
L and, for the corresponding transformations,
|G,]" equals G).

We now construct combinatorial square-roots.
Consider an L-sequence ¢ = ¢y...cp_q1 of num-
bers. Let 1c|® be the sequence rotated by 3 posi-
tions. Thus

1cL3 ‘= (€3C4C5...CL_1CoC1Ca -
For r € 7Z, define the rotation |c|” analogously;
so 1c|’ = c.

A linear expression such as “2c+ 57 shall mean
the L-sequence d, where each d; := 2¢, + 5.

Given two L-sequences a and c, let

a:cC = QqpChaiciageCy...ay5_-1Cr,—1

denote their alternation.

The Weave operation. From an L-cycle A\, we
can produce a square root of the corresponding L-
solo G by cutting its Rohlin stack into left /right
halves, rotating one half (perhaps), and then zig-
zagging. We now describe this operation directly
on .

Arbitrarily cut cycle A to produce

an L-sequence cocycs . .. cr_1, with each

11: ¢, € [0..L); here N(¢y) = coq1, where @
denotes addition mod L.

For a “rotation number” r € Z, define this cycle,
Weavey(r) == (2¢:12¢+1]").

The resulting cycle has length 2L, and does not
depend on where A was cut.

12: Ezample. Suppose that L = 7 and sequence
c is 0246135. Zig-zagging gives this 14-cycle

Weavey(0) = (00224466113355),

Computing dg-distance
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where ¢ denotes 2¢, and ¢ means 2c+ 1. Rotating
the dotted numbers by 4 places produces

Weavey(4) = (01234560123456)
— (034781112125691013).

For p := Weave,(r), observe that the cycle
structure of p? is (2¢)(2c + 1); this, regardless of
what 7 equals. And since the /* atom of parti-
tion @)y, is the union of atoms 2¢ and 2/+1 of Qar.,
we see that transformation [G,]? equals G.

13: Root Lemma. For an L-cycle A\ and rotation
number r € Z, the 2L-cycle Weave,(r) is a com-
binatorial square-root of \. O

Computing dx-distance

We now convert distance between shuffles to a
computation directly with permutations. The no-
tation for the following lemma appears anon.

14: Frequency Lemma. Suppose that w is an K-
perm and p is an L-perm, where L |0 K. Then

dK<GW7GP> = Dﬂ(/))'

Atoms of partitions. Enumerate the atoms
of Qi as Ag,...,Ax_1 and the atoms of (), as
Co,...,C_1. For the nonce letting V' denote the
ratio %, remark that each atom Ay, is the disjoint
union

VE+[V—-1]

|_| 027

(=VEk

x3 Ak =

of V' consecutive ()r-atoms. For an index /, let v
be the corresponding value of k in (x). That is,

where [-] is the floor (greatest integer) function.
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Measuring disagreement. Use D, (p) to mea-
sure the frequency of discord between 7 and p, as
measured on the partition, (g, that © permutes:

2?7

Di(p) = tH#{ten.1) | oll) £ 70}

Erample 77, revisited. Let permutation m be the
7-cycle (0123456). Its square is A = (0246135) of
Example ??. The 14—structure of G is

7= (024681012)(135791113).
The cycle p := Weavey(4) of Example 77 is
p = (034781112125691013).

Evidently, G, # Gr. Although di4(G,, G) is pos-
itive, the d; distance is zero. To see this, apply
the reduction ¢ — ¢ = [ﬁ- 1—74J to the preceding
two displays. This results in:

7:(0123456)(0123456)
p: (01234560123456)

Thus D, (p) = 0.

When we apply this observation, in (¢4), our
cycle X will not be 72, but rather will be a pertur-
bation of 7. O

Proof of (??), the Frequency Lemma.  For speci-
ficity, take K' = 21. Define transformations

T =G and R = G,
and have P denote partition ()o;.

Given two P-atoms, say, Ag and Aq7, let F be
the set of £ € [0.. L) with / = 8. Enumerating the
Qr-atoms as Cy, ..., Cp_q1, then, Ag is the disjoint
union | J,cg Cp. Thus

n(R(As) N Asr) = 3 p(R(Co) N Arr)
ey

= L#lres|plt) =17}

Computing dg-distance
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Replacing “17” by 7(8) and “A;;” by T'(As) gives
this:

n(R(As) NT(A5)) = +-#{teF|p0) =n(0)}.

Substituting k& for “8”, then summing over all k
in [0..21) yields that

> u(R(A)NT(4))

*e AeP

=1+ #{te(0.L)| p(t) =n(0)}.
With B denoting T(A), subtract each side of (x)
from 1 to arrive at this:
D.(p) = 1=, ,u(R(A)NB)
= >, [(B) = u(R(A) N B)]
= >, su(R(A) A B);

this last, since R(A) and B have the same p-mass.
The denouement, by applying R, is that

D.(p) = > su(T7(B) A R(B)),

BeP

which is indeed the definition of dx (T, R). ¢
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Reduction to Combinatorics

Here is the standing condition which is in force for
the remainder of §77.

Reduction to Combinatorics

We have integers K @ J, with J odd, and
have a J-solo T'. Necessarily, T equals some shuf-
fle G, where m:[0.. K)O is a permutation com-
prising % many J-cycles. Define

0'1271'2

S = T2 q,

=mom and

16:

the corresponding squares.

Since J is odd, note that permutation o, like 7,
is made up of % many cycles, each of length J.

Courtesy of (?77), the collection of odd-solos is
(2-dense. Consequently:

¢3: If each odd-solo is locally-dense for g,
" then SQUARES is Q-residual.

This follows from (??) and ((2).

Describing property ((m, K). Let (xx)-
cycles be the infinite family of cyclic per-
mutations A:[0..L)O taken over all lengths
L =K 2K 3K 4K, ....

Here is a combinatorial property that the
7, K pair might have.

PROPERTY (7, K):  Given ¢ there is a § > 0
so that for each (xx)-cycle \:

There is a combinatorial square-root p,
B’ of A\, for which
D,(\) <d = D,(p) <e.

Roughly:  “Fach perturbation \ of the square
of m, has a combinatorial square root close to m.”

17: LocDEN Combinatorial Lemma. If each pair 7
and K has property [(m, K), then SQUARES is
residual in €2. O
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Proof. Letting T denote G, we will first show
that

77 f(rK) = o(T,K),
by letting d mean dg, and then applying Prop-

erty a to the squaring map via the correspondence
below.

General: f: X—A Squaring: : Q22—

W, "X d,-topologies €
X, CL d,-topology C €
Uu T d-Ball.(T"), d-Balls(S)

Establishing (7?7"). A d-openset U > T may
freely be shrunk to some d-Ball.(7), for a suffi-

ciently Lilliputian . Property f(m, K') produces
a number § for which (5’) holds. Happily,

A = {G,\ ‘ Ais a (xK)—cycle}
is C-dense, thanks to (??). By definition,
T = d-Balls(.5)
is a d-open neighborhood of (7).
Using the Frequency lemma twice, (3') says that
for each (xx)-cycle A,

GrheYT = G,ed-Bal(T).

Thus ANTYT C p(U), as required by (o). O

Second step. Given that each (7, K) holds,
we now know that each (T, K) holds. Fixing T
and varying K over the multiples of J, the Baroque
lemma guarantees that 7' is locally-dense for p.
Courtesy of (¢3) then, SQUARES is Q-residual.

The upshot, (¢4). We have navigated from
(C1) to this becoming our goal:
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Given ¢ there is a § so that for each
L o K and each L-cycle \:
(4:
D,(\) <0 = D;(p) <2

where p is the 2L-cycle Weave,\(%).

The above assertion is a specification of property
B(m, K), since for an arbitrary integer r, the cy-
cle p := Weave, () is a combinatorial square root
of .

Establishing ({4)

Given a K-perm o and an L-cycle A\, with L e
K, we ask: How does frequency-of-disagreement
behave relative to the Weave operation?

The results that we need, (?7) and (?7?), arise
from substrings of A which look like pieces of o.

The o-blocking of a cycle A

Cut A to produce a sequence b, with each num-
ber by € [0..L) and with A(by) = byg1; here, ®
means addition mod L. Note that from its defini-
tion, (??"), computing D, (\) does not require all
the information in b. Indeed

D,(\) 2= L #{0e 0. L) | e # olcr)}

where c is the Qg -name of b; that is,

18: cp = by 2% {Cg~%J .

At this juncture, let A C [0..L) denote the
positions of agreement —the set of indices ¢ such
that cip1 = o(c); thus #A/L equals 1 — D, ().
Decompose A into a disjoint union,

A = |_|nN:1 (1)

of half-open intervals (of integers), satisfying 0 <
U <r <ly<ry<---<ry < L. Each interval

The o-blocking of a cycle A
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[¢..1) is called a o-block of A. This decomposi-
tion is unique."*

Given a positive integer M, call a o-block [¢ .. 1)
a o-M-block if its length dominates M; that is,
if r—+¢ > M. Thus the “o-M-blocking of \”
comprises all the o-M-blocks. Let

w(o-M-blocks on \)

denote the probability that an index in [0.. L) is
in some o-M-block. Evidently M = 0 yields the
full o-blocking, and so

p(o-0-blocks on \) = 1— D,()\),

by definition.

19: Blocking Lemma. With o, A\, L and M as

above,
a: 1 —D,(\) > pu(o-M-blocks on \).

b: u(e-M-blocks on \) > 1 — MD,(\).

Proof of (b). A miracle occurs: Suppose that every
position r € [0.. L) of disagreement, ¢,q1 # o(c,),
happens to be the end of a o-block [¢..r) whose
length, r—/, is exactly M —1. In this one case, the
quantity 1— u(o-M-blocks) is just large enough to
equal M times the probability of a disagreement.
So

1 — pu(o-M-blocks on \) < M - D,(N),

is the general non-miraculous assertion. ¢

“4There is an exceptional case: When D,()) is zero,
A is the entire cycle [0.. L) and so A does not break into
intervals. Since this exceptional case makes the subsequent
estimate even better, we can safely ignore it.

With D, (\) positive, we can have chosen to cut A so
that no o-block “wraps around” the end of c; that is, so
that ¢y # o(cr—1). Once c has been so chosen, the decom-
position is unique.
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Upper-bounding disagreement

To establish ((4), there is no loss of generality in
taking particular values for the parameters of our
standing condition (??) and so we fix

J=7 and K =21 .

In consequence, ™ comprises three 7-cycles.
For specificity, take one of the 7-cycles to be

0—=+1—-2—-3—-4—-5—-6
(and 6 — 0). The corresponding 7-cycle of o is
20: 0—=-2—24—-6—-1—-3—5.

Given an L-cycle A with D,()\) small, define its
@ r-name c as we did in the (??) paragraph.

o-M-blocking A\. Having frozen a value for M,
there are three “types” of o-M-block on A; one
for each of the three 7-cycles of o. Suppose that
[(.0+M) is a o-M-block of type (?7). That
means, letting s denote the sequence 0246135,
that

Cl¢.¢+M) = SSSSSSS:---SSS,
—_———

M positions

where this s---s represents a concatenation of
copies of s, possibly ending (starting) with an ini-
tial (terminal) segment of s. Such segments have
no effect on the observation below and so, for sim-
plicity, the notation below presumes that “s---s”
is exactly a concatenation of copies of s.

Thanks to this presumption, the last position
of s---s is occupied by ‘5’. This is a “position
of agreement”, so ‘5" must be followed by ‘0’. We
will write this trailing zero in slanted and enlarged
font. Thus, along the name ¢, we witness occur-
rences of

?SSSSSSS cee SSSO s
M+2 positions

where ‘7’ indicates an unknown symbol in [0 .. 21).

Completing the proof of ({4): Picking &
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7-M'-blocking p. Since £ = T = 4 we
consider p := Weave,(4). How does the M-block
s---s appear on the p cycle?

Figure 7?7 shows part of the Weave,(4) cycle.
The o-M-block upstairs zips together with the
o-M-block downstairs to form a 7-block of length
at least 2M — J.

The upshot is that for M an arbitrary positive

integer,

p(m-M'-blocks on p) >

22: ’
2 p(o-M-blocks on A),

where M’ is 2M — J.

Completing the proof of ((4): Picking ¢

Since J, K and ¢ are known in advance, we can
take M sufficiently Brobdingnagian that

J
23: m<5; then let 5::%.

Consider now an L-cycle A\, with L @ K and with
D,()\) < §. Courtesy of (??7,77) above,

p(m-blocks on p) >
[1 —¢]- pu(o-M-blocks on A).

Furthermore,

p(o-M-blocks on \) > 1 — MD,(\)
=

1—e¢,

by (??b) and (??). Together, the two preceding
displayed inequalities yield that

1-D;(p) > [1—¢][l—¢] > 1—2¢.

Consequently 2¢ > D, (p), which establishes ((4)
and completes the proof that SQUARES is residual
in €.
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Fig. 21:

Creating combinatorial roots [bis]
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1 - 4
Al
2 ... §

O O

Part of the Q21-name of p: The upper line of shows the M + 2 string 7s---s0 which, in the lower

line, is shifted left by 4 positions. The arrows show how p weaves between the two lines.

§C Handling a general exponent e

We sketch, for a general exponent 2 < e < oo, the
argument that @.(€2) is residual. For simplicity
of notation, however, we will take e = 17; so each
“16”, below, represents “e — 17.

Say that a positive integer J is good if J = —1,
modulo 17. Here, the good-cycles will play the
role that the odd-cycles played in §77.

Creating combinatorial roots [bis]

Handed 17 sequences, a, b, ..., c, each of length L,
define their alternation a:b: ... : ¢ to be the
sequence

aobo...Coalbl...clagbg...CQ ce CLLflbLfl...CLfl s

whose length is 17L.

Given an L-cycle A, cut it to produce an L-se-
quence ¢, as in (??). As before, a linear expression
such as “17c + 5”7 means the L-sequence whose
("4 number is 17¢, + 5. For arbitrary rotation

17

Standing Condition (??[bis]). Weset o :=7
K

and S :=T"'". As before, m comprises & many J-
cycles; and so does o, since J is relatively prime

to 17. We need but establish this version of (¢4):

Given ¢ there is a § so that for each
L o K and each L-cycle \:

D,(\) <d = D,(p) <2¢
C4[bis]:
where p is the 17L-cycle

Weave) (r, r,r, 18 ,r)

J+1

with r == =

With this value of r, the Reader may con-
vince himself that the following analog of inequal-
ity (??7) succeeds: For M arbitrary:

p(m-M'-blocks on p) >

numbers 7y, ..., 7, define %-M(U—M—blocks on \),
p = Weave,(r1,72,...,716) with M’ .= 17M — F, where F is some number

which depends neither on L nor M. A straight-

to be the cycle forward estimate”” allows F' = [J + 1] - 17.

(17c : 117c + 1| : 117c + 2|+ ... : {17c + 16]™) The final step is to grab an M sufficiently large
that

whose length is 17L. Independent of what the -

rotation numbers are, the cycle structure of the T <e; thenlet §:= I

composition p'7 is
(17¢)(17c + 1) (17c + 2) ... (17c + 16) .

Thus transformation [G,]'" indeed equals G, so
permutation p is a combinatorial 17" root of .

As before 1 — D, (p) > 1 — 2¢, which delivers the
goods on ((4[bis]).

“In general, F' = [J + 1]e works. A fastidious analysis
would justify F = [J — 2][e — 1], once M > J + 1.
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Reflections on the argument

The combinatorics used to show 9(€2) residual
are elementary. The one non-elementary tool
was (?7), that analytic sets are almost-open. We
could do without this theorem if we had a “yes”
to this question.

Ql: Question. Is po(S2), the set of SQUARES, a
Borel subset of €27 O

In the more general setting of a Polish
semigroup, there is an example where the an-
swer is known to be “no”. Humke and Laczkovich
showed, in the Polish semigroup (under composition)
of continuous functions from [0, 1JO, that the set
of composition squares g o g is not Borel. (See [?].
Also see Beleznay, [?].)

D THE POWER MAP IS LOCALLY COMPLEX
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8§D The power map is locally
complex

Having shown that LOCDEN(p,.) is dense in €2,
one would be singularly incurious to not inquire
about density of its complement.

It turns out that the tools already developed are
sufficient to show that g, is “locally complex” in
the sense of (??ab), below. Part (??7a) is simply
an embellishment of what we already know.

Use /T to denote the collection of e™ roots
of T, i.e, the closed set o '(T).

Locally lacunary. With respect to a mapping
f:X—=A, apoint z € X is locally-lacunary if it
is not locally-dense. Equivalently: There exists a
neighborhood of z whose f-image is dense in no
neighborhood of f(z).  Let LocLAc(f) denote
the set of locally-lacunary points of f.

24: Complexity Theorem. For each integer
e € [2..00) and transformation T, the set v/T
is closed and nowhere-dense in ). Furthermore

a: LOCDEN(g,) is residual. Indeed, it is a dense
Gs-subcollection of €.

b: LocLAcC(gp.), while meager, is dense.

Remark. Since VT is closed, that it is
nowhere-dense follows immediately from noting
that WEAKMIXING and ROTATIONS are disjoint
families, each of which is €2-dense and is sealed
under taking e roots. (With @& meaning addition
mod 1, the set ROTATIONS comprises all transformations

isomorphic to some rotation z — x @ r, for some rotation
number r € R.) [

Since LOCDEN(g,) is Q-dense, (??a) follows
from this general assertion:

25: Lemma. Suppose that f: X—A is continuous
map from a metrizable space X (not necessarily sepa-
rable) to a topological space A. Then LOCDEN( f)
is a Gs-subset of X. O
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Proof.  For a number o > 0, let U, comprise
those points z € X such that: There exists a
positive € < « for which f(Balls(z)> is dense in
some neighborhood of f(z).

Since LOCDEN(f) = Ny o Ua, it will do to
simply show that U, is open. For demonstrat-
ing openness at a point z € U,, take an ¢ < q,
then an open set T 3 f(z) such that f(Ballg(z))
is dense in Y. Necessarily, the intersection

I = Bal, .(2)Nnf (7
is an open neighborhood of z. We need but show
that I C U,, as follows.

Fix a point y € I and let r := dist(y, z). Then

Ball,,.(y) D Ball.(2),

and so the f-image of Ball,,.(y) is dense in Y.
Therefore y € U,, since r + € < a. ¢

Transmogrifying (??b) into Combinatorics

Following the strategy of §77, let us find a state-
ment about permutations that will imply (?7b).
Also as earlier, since all the ideas appear in the
e = 2 case we let p mean @y from now on,

It was essential in §77 that J was odd. Here,
in §77 it is essential that J be even. Fix a large
even number J and a J-cycle w. Let o := 7? and
have U denote this ball:

26: U — Ball;(GTr) ’ Where thfg pseudo-met-
3 ric used is d ;.
We will show that

The p-image of U fails to be dense in

29/
""" each and every neighborhood, T, of G,.

Using H := J/2 to denote half of J, write our
J-cycle 7 as

(ajbjagbsasbs - - -ayby )

Some reordering of the numbers [0.. J).

Transmogrifying (??b) into Combinatorics
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Its square, o, has cycle structure (a)(3), two H-
cycles, where

« = ajasasz...ay and

ﬁ = b1b2b3 .. -bH .

We now perturb permutation o to a nearby cy-
cle, og.

For each integer K lo J, define a K-cycle o to
be (AB), where

?2?7: A =aaa- -«
~——_———

and B:=0888---3.

——

K .
% copies

5 copies

27: Lemma. In the coarse topology, G,. — G,
as K /oo. O

Sketch of proof. Since the dy-topologies 7 C, we
need but establish that

” lim dy (G, Go) = 0
for each N in some sequence N — oo; so fix
an N e J. Since di 7 C, we only need prove (x)
for, say, those values K ® N. Writing K = kN,
then,

1 1
dv(Goy. Go) < 77~ = 77
N( « ) k - Length(«) kH
courtesy the Frequency Lemma argument. ¢

Defining property ~(m, K). In what follows,
parameters J, m and K are implicit. We write o
for 72. Phrases such as “For each/every/all p...”
shall mean:

“For each L ' K and each L-
cycle p...”.

Lastly, X is another name for p?.
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PROPERTY ~(7, K):
that, for each p:

There exists a positive § so

Y

If D, (\) <6
then Dr(p) > .

Remark. The value 1, here and in (??), is concep-
tually % We use % to allow room for edge effects
in the estimate to follow. O

28: LocLAc Combinatorial Lemma.  If ~(rw, K)
holds for all large (or just infinitely many) K o J,
then transformation G is locally-lacunary for the
squaring map. O

Proof.  We verify (??'). Let d(-) be a function
going to zero sufficiently eagerly that § < + and
v(m, K) holds, where —here and henceforth— we
abbreviate § = §(K).

Centered at G, , we would like to have a ball I'x
of transformations so that for each A:

ke Grely = DUK()\> < 4.
So, courtesy the Frequency Lemma (?77), letting
FK = dK—BalL;(K)(GGK) .

does the trick.

Handed an arbitrary C-open set T > G,,
lemma 7?7 assures us that the 'y ball lies within
T, once K is Brobdingnagian. (This uses that the
d,,-topologies tend to C.) So establishing that o(U)
misses ['x is enough to confirm (??’). In conse-
quence, this statement,

The intersection U' == o '(Tx)NU is
empty,
is what we wish to substantiate.

Restating (xx), if G, € ¢ }(Tx) then D, (\) <
d. So property 7y(m, K) delivers that G, ¢ U.
Thus the C-dense set

{G p is an L-cycle, for}
P

some L o K
is disjoint from U’. In light of the fact that U’ is
C-open, it must of needs be empty. ¢

Demonstrating v(m, K) for large K
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Demonstrating (7, K) for large K

Choose an L @ K and an L-cycle p. Similar to the
paragraph of (?7?), cut p to produce a @) j-name

C = CpC1C2C3 "+ CL—1,

and let @ mean addition modulo L. Recall that
1 — D, (p) is the probability that an index ¢ €
[0.. L) satisfies

W(Ce) = Cp1,

that is, is a position of agreement of the @) ;-
structures of p and 7.

Here now is the idea behind the proof
of v(m, K).
29: Lemma. For each ¢ positive, for all large K,

for each cycle p with D, (p) < ¢, the following
holds:

With probability exceeding 1 — ¢, if an
index ( is a position of agreement of p
with 7, then { & K is a position of
disagreement.

2?7

In particular, property ~(m, K) holds once ¢ is
small enough. O

Proof of (7?7). Call a word w an “AB-block” if,

using the words from (??’), it is a concatenation
w = ABABAB---AB

of consecutive copies of AB, possibly starting or
ending with a partial copy.

Recall that A is a concatenation of copies of
word a; - --ag, as Bisof by - -by. Let a prime, ’,
flip a letter to the opposite letter having the same
index; so a’5 means by, and b’5 means as.

Since words A and B each have length K/2, ev-
ery AB-block w is anti-periodic with period K /2,
in this sense:

_ /
Wiy % - wy,

whenever both indices 7 and 7 + % are in w.

Filename: Article/34Genericroots/roots.latex



Prof. JLF King

ox-blocking the cycle A

The @Q;-structure of A\ = p?
where

is (CEven) (COdd) 7

CEven = CpCoCyCq -+ C[—2

COdd = (C1C3Cs5C7 - C[,—1 .
Let the symbol C[E7V“e‘113] mean the subsequence
of ¢ with indices in the interval [7..13]. In
this example,

Even Odd
Ci7.15] = CsC10C12€1a and €755 = CrCoC11C13C15

where, for cﬁfl.dw], we have made the analogous
definition.

Now suppose K = 6. Then walking % = 3 steps
along c¢®% brings us from ¢; to ¢;3, i.e, to c74x. So
the above antiperiodicity give this generalization,
for every ¢ € [0.. L):

If Cﬁ"eﬁr K] and c[%‘; +K] are each AB-blocks,
then
Corr = Cp-

Lower-bounding disagreement

Since € and K are known in advance, we can take o
small enough"® that inequality D, (\) < § im-
plies the following:

With probability exceeding 1 — €, an index {
in [0.. L) satisfies the following:

Even Odd
Sequences €;" 1y and €, g

are each AB-blocks.

Finally, suppose that such an ¢ is a position of
agreement of p with 7. If ¢, is in A, say ¢, = as,
then cpy1 = m(a;) = bs. Consequently, by (),
and

/
Covx = a5 = bs

/
Cev1+k = by = as.

Y0Letting & be [e/[20K]] * works. This uses the argument
of the Blocking lemma, (?7D).

Lower-bounding disagreement
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But 7T(Cg+K) = 7T(b5) = ag (Well. .. the 6 is actually to
be taken modulo H). Consequently,

7T(012+K) # a5 = Cl414K -

Thus position £ + K is a position of disagreement
between p and 7.

A similar argument goes through if ¢, is in B.
Thus we have established (??'). This wraps up
the proof of (??a) of the Complexity theorem. ¢
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E  Egress

Questions in Newtonian mechanics lead to dy-
namical systems in which “time is real”; the sys-
tems are R-actions (flows p:IxR—1) rather than the
Z-actions studied in the current article.

Q2: Question. Does the generic transformation
embed in a flow? Is this set

{T ’ T(-) = ¢(-, 1) for some flow ¢ on ]I}
of transformations, a residual subset of €27 [l

For such a T, the set of those transformations S
which commute with T', the commutant of T', in-
cludes a copy of R. So an inexpensive “no” to (Q2)
would follow from showing that only a meager set
of T" have an uncountable commutant.

Alas, the generic T is rank-1 and rigid, thus nec-
essarily has commutant which is uncountable.””

(Q3:  Does the generic T embed in a (measure-
preserving) Q-action? ]

For a T' € RAO, how close does the RAO The-
orem come to answering (Q3)? Certainly, for
each n, we can pick an n'" root R,, of T, then fix
a set 8§ C [2..00) and look at the group Gg C Q
which is generated by {R,},cs. However, the
RAO theorem gives no guarantee that R,, goes to
the identity, as n — oo. So RAO does not give
us control, in terms of § solely, on the topology
of GGg. This is the reason that the groups below
are equipped with the “no restriction” (i.e, discrete)
topology.

Fixing K, let Qx be the additive subgroup of
the rationals generated by 1/p¥ as p ranges over
all the primes; equip Qg with the discrete topol-
ogy. Call each p a “K-prime”.

Evidently Qg comprises all ratios

/el -

“TKatok and Stepin showed, in [?], that “rank-1 and
rigid” is generic, although using a different language. Def-
initions of rank-1 and of rigid appear in [?]. That rigidity
implies uncountable commutant appears in [?] and [?].

E EGRESS
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where n is an arbitrary integer and each k; €
[0.. K].

30: Theorem.  The generic T extends to a Q-
action. O

Proof. It suffices to fix a T in
31: WEAKMIXING N RANK-1 N RaAO

and extend it to a Qg-action.

For each K-prime 7, let R, be a 4" root of T'.
Let Gk be the subgroup of (€2,0) generated by
the R, transformations. Since T' is rank-1, its
commutant is abelian”® and thus G is abelian.

To show that G is isomorphic to Qg, define
a map ¢ from (Gg,o) to (Qg,+) as follows. For
each finite set of K-primes {«,,...,v}, and of
integers a, b, ..., c, let

1/1(Raa0R5bO...ORWC) = g—i—%—i----—i-g.
That this 1 is a group isomorphism will follow
immediately once 1) is shown to be well defined.

To address this latter aim, suppose that expo-
nents a,...,c cause S := R,"o---0 R, to be the
identity transformation. Letting L be the prod-
uct a- - -, then S = T*, where

. L [, note c
k = aE+"'+C§ L.[ +...4 ¢

% 7] :
Since T is weak-mixing it cannot be periodic, so k
must be zero. Thus & +--- + % is zero. ¢

Root chains. Related to (Q3) is this: Does the
generic T extend to a Qu-action?  Here, Q is
the group of rationals (Q, +), but equipped with
the discrete topology.

In light of the foregoing theorem, what is the
obstruction to fabricating a Qu.-action? If, for

“8 Although this follows from the Weak-Closure theorem,
[?], there is a generic subset of RANK-1 —the maps with
“flat stacks”— where abelianness of the commutant follows
by an elementary argument.

Filename: Article/34Genericroots/roots.latex



Prof. JLF King

each prime p, we can produce an infinite length
“p-chain”

T::S();S&;SQ;...
p p p

where each Si.; is a p' root of S, then a Qu-
action can be build as above. Thus one is led to
ask:

Q4:  Does there exist a weak-mixing 1" which
has square-root chains of each finite length, but
no infinite square-root chain? [l

I raised this question at the Ergodic Theory
seminar while on sabbatical at U. of Toronto,
in 1996-1997. The menagerie of examples and
techniques from the 1960&70’s suggested a “yes”
to (Q4). One natural approach, harking back to
Ornstein’s construction, is the “counterexample
machine” built by Dan Rudolph, which uses the
rank-1 mixing map of Ornstein.

Vaguely, Rudolph’s machine takes a permuta-
tion of Z, and produces a weak-mixing transfor-
mation with analogous properties. A standard ap-
proach to (Q4), then, would be to search the group
of Z-permutations for:

A permutation w of Z which has arbi-
trarily long square-root chains, but no
infinite chains.

Alas, the Reader can verify that no such 7 exists.

Techniques of del Junco and others.
Nonetheless, ideas of the counterexample machine
can be used. Andrés del Junco developed machin-
ery, for certain abelian groups G, which produces
a G-action @:IxG—I for which the commutant
of certain transformations in the action is limited
to the G-action itself.

This suggested first constructing a denumerable
abelian group (M, H, e) and element n € M such
that 1 has square-root chains of each finite length,
but has no infinite chain. Here is one such group,
the Madore group:

E EGRESS
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Let M be the free abelian group on symbols
(generators) 1,71, 72, - . ., where the generating re-
lations are

32: v By BBy =0,

27 copies

We now describe M in an alternative way.
Let G; be the additive cyclic group [0..27); that
is, Z/27. As a set, define M to be the direct sum

33: M = Z@Gl@GQ@

So M comprises all tuples (a | g1, ¢a,...) where
a € Z and g; € G;, and only finitely many of
the g; are non-zero. Given o == (a | g1,¢2,...)
and = (b | hy, ha,...), let N be smallest natural
number with g, = h,, = 0, for all n > N. Define
addition in M by

1T,y . > :

where ¢; is the j™ “carry” in group [0..27), and
r;j is the remainder. That is

aBf = <a+b+z§v_1cj

th «

oy = e, e Sl
Thus H is component-wise addition, with a carry
from the j*" component into the n0zero™ compo-
nent. Evidently M is abelian with e := (0 | 0,...)
its neutral element.

To write down an additive inverse, Ha, let J be

the number of indices j with g; # 0. Then

Sa = (~la+J]| fifa S ),

where f; is the Gj-inverse of g;. So f; is 27 — g;,
if g; # 0, and is zero otherwise.

Identify <k ’ 0,.. > with the integer k, thus
exhibiting a copy of (Z,+) inside of (M,H). Our
M is generated by the collection {n,~1,72, ...},
where

The 1 is in the zero-

n = <1 | 0, 0, 0, 07 0> 07 s > th position.

. . . .th ._
;= <0|0,“.’ > This 1 is in j*" posi

tion.

0,1,0...
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Since v; is a 27-th root of 7, one sees that (??) with
operation H is the same group as defined by (77).
Fixing j, there is a square-root chain

n L 23*17.] L 23727] AR

of length j. Yet one can check that no element in
M ~ {e} has an infinite chain.

Answering “yes” to (Q4). Blair Madore, a
student of del Junco, proved the following theorem
as part of his doctoral travails.

34: Madore's Theorem (Theorem 1.1 in [?]). Let G be
a countable abelian group with subgroup Z%, for
some d > 1, where each element of the quotient
group G/Z% has finite order. Then there exists a
rank-one action of G so that the transformation
T corresponding to (1,0,0,...,0) in Z% is mixing,
simple, and only commutes with the other trans-
formations in G. O

In particular, there is such an action ¢ of the
Madore group. With 7 meaning (1 | 0,0...),
then, T := ¢" is a mixing transformation having
no infinite square-root chain.

Conditions implying a Q., extension. Var-
ious general results would imply that the generic
Z-action extends to an action of the discrete ra-
tionals.

Q5: Generically, does T have at most one square-
root? 0

If amap T in (??) had, for each j, at most one
7™ root, then the proof of (??) would extend T to
a unique Q4 .-action.

Note that (Q5) is equivalent to this query:
For the generic rank-1 map T, is the identity map
the only involution commuting with T'7

F QUESTIONS FILE
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Closing thoughts. The RAO theorem was
proved under the aegis of the coarse topology
on 2. Because the set of maps with RAO is
an analytic set, the Equivalence Theorem of [?,
thm. 7] applies to say that RAO is also residual
in another standard setting, the Polish space of
shift-invariant Borel probability measures on the
Hilbert cube [0, 1]”.

It may well turn out that there are more general
equivalence theorems, and that settings whose
topology is more natural for the transformations
arising in physics nonetheless have the same ab-
stract genericity properties.

§F  Questions File

(This are additional questions and are not part of the

“Roots” article.)

Question ()1. Is there a trn T" which has a square-
root chain,

T+ T - Ty,

for each N, but has no infinite square-root
chain? O]

Question ()2. Does there exist a permutation
of N which has square-root chains of all finite
lengths, but no infinite chain? (Almost certainly,
“No” —simple details need to be checked.) L]

Ezxample 2. Here is a denumerable group M,
and element 7, so that 1 has all finite square-root
chains, but no infinite chain. The only infinite
chain is e < e <« ..., where e is the identity
element,

Let M be the free abelian group on symbols
(generators) 7,791,792, ..., where the generatoring
relations are

35: )2 =n, forj=12....
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We now describe M in an alternative way.
Let G; be the additive cyclic group [0 .. 27); that
is, Z/277. As a set, let M be the direct sum

36: M = Z@Gl@GQ@

So M comprises all tuples <a ) 91,92, - - > where
a € Z and g; € Gj, and only finitely many of

the g; are non-zero. Given o = <a ‘ 91,92, - - >
and § = <b ‘ hi, ho, . .. >, let N be smallest nat-

ural so that g, = h, = 0, for all n > N. Define
addition in M by
T1,T2,... > ,

carry” in group [0..27). That

aBp = <a+b+2§-vzlcj

where ¢; is the j™ ©

is
gj+hj = Tj+Cj'2j, WitthG[O..Qj).

Thus H is component-wise addition, with a carry
from the j** component into the n0zero compo-
nent. Evidently M is abelian with e :== (0 | 0,...)
its neutral element.

To write down an additive inverse, Ha, let .J be
the number of indices j with g; # 0. Then

BHa = <—[G+J]‘f1,f2,f3,-~>,

where f; is the Gj-inverse of g;. So f; is 27 — g;,
if g; # 0, and is zero otherwise.

Identify <n ’ 0,... > with the integer n; this is a
copy of (Z,4+) in (M,H). Our M is generated by
the collection {n, 1,72, ...}, where

This 1 is in the zero-

n = (110,0,0,0,...) th position.

. . ,th ._
;= <0’0"“’ > The 1 is in j*" posi

tion.

0,1,0...

Since 7; is a 2’-th root of 7, one sees that (?7)
with B is the same group as defined by (?77).
Fixing j, there is a square-root chain
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of length j. Yet one can check than no element in
M \ {e} has an infinite chain.

For an arbitrary element v € M, for each j,
note that v?' has a j' component of zero. Thus

If an element ¢ has a non-zero j™ com-
ponent, then this element has no 2’-th

root. Hence it has no square-root j-
chain.

Consequently, no (non-identity) element of M has
an infinite chain. After all, from a non-zero in-
teger n, the longest an integer-chain can be is k,
where 2¥||n. And once a square-root chain enters
the non-integers, say at 4, its length has a fixed
bound (which depends on §). O

Question ()3. How does the squaring map on €2
interact with RANK-17

A generic T is rank-1 and, if the later argument
is correct, has roots of all orders. Since C(T) is
necessarily abelian, all of T’s roots commute. If
we could show that 7" had infinite chains, then T'
would live inside a Q-action. [l

Observation 4. Let Qg be the (additive) sub-
group of the rationals generated by 1/p%, as p
ranges over the primes; call p a “K-prime”. Qg
comprises fractions n/[pf'- - -p/y’], where each k; is
in [0.. K].

For each K,

The generic T lives inside a Qg-action.

To see this, fix a rank-1 T" which has roots of all or-
ders. For each K-prime p, let S, be a p™ root of T'.
Let Gk be the abelian (7 is rank-1) group gener-
ated by all the S,. Define a mapping ¢:Gr—Qx
by

@b . a b c ¥

Squ S;n e
P q r pqg---7
where v =aN, +0N,+---+cN,.

In the last expression, N, is the product of all
the K-primes except p. To show this well defined,
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suppose ¢ sends S - - S° to zero, i.e, 7 = 0. Now
p divides 0 and bN, + - - - 4 cN,, yet p is co-prime
to IN,. So we can write a = Ap, for some integer A.
Similarly we write b = Bgq, ...and ¢ = Cr. In
consequence,

So...8¢ = T4... T,

p

But this last transformation equals Id, since

A+---+C = %_|_..._|_£

T

which is zero. Lastly, since ¢ is well-defined,
it trivially is a homomorphism from (G, o)
onto (Qx, +). O

Question (). Does the generic T have a unique
square-root? Since generically C(T') is abelian,
if S; are distinct square-roots of T, then SS; ! is
a non-trivial involution. So the question above is
equivalent to:

Does the generic rank-1 have no involu-
tions in its commutant?

If so, then since T" has dyadic roots of all orders, in
has an infinite square-root chain. If C'(T") had no
e-periodic members, then 7' has infinite e'"-root

chain, for e = 2,3,.... Then the above argument
would show that T lives inside a Q-action; indeed,
a unique Q-action. O

Question ()5. Does the generic T live in a flow?
Is the generic flow ® determined by its time-1
map”? O

Question Q6. Suppose that T" and R are arbitrar
maps. For the squaring map g: If p(BallT(R)S,
misses Ballo.(T'), does a sufficiently small ¢ force

o(Ball,.5(R)) to miss Ball.(T)? O

Question ()7. For a weak-mixing T, under what
circumstances is VT compact? 0
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