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Abstract: In the sense of the Baire Category Theorem
we show that the generic transformation T has roots of
all orders (RAO theorem). The argument appears novel
in that it proceeds by establishing that the set of such
T is not meager —and then appeals to a Zero-One Law.
(Lemma ??.)

On the group Ω of (invertible measure-preserving) trans-
formations, §?? shows that the squaring map ℘ :
S 7→ S2 is topologically complex in that both the
locally-dense and locally-lacunary points of ℘ are dense.
(Theorem ??.)

The last section, §??, discusses the relation between
RAO and a recent example of Blair Madore. Answering
a question of the author’s, Madore constructs a trans-
formation with a square-root chain of each finite length,
yet possessing no infinite square-root chain.

§A History

A transformation T might have a cartesian square
root, T = S×2 := S × S, or a composition square
root, T = R2 := R ◦ R; I will henceforth call
composition roots just roots. In a paper which
had a significant impact on Ergodic theory in
the 1970’s and 1980’s, “On the root problem in
ergodic theory”, [?], Don Ornstein constructed a
remarkable transformation T with no roots. Then
Dan Rudolph showed, in [?], that the parameters
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of Ornstein’s construction could be tuned to in-
sure that T was prime –no factors– and therefore
had no cartesian roots. (This was shown indepen-

dently by Ken Berg in [?].) Indeed, Rudolph con-
structed a T with the stronger property of min-
imal self-joinings, and showed that MSJ implies
primeness and trivial commutant. Later work, [?],
showed that MSJ followed automatically from T
being both mixing and rank-1. The MSJ prop-
erty, and the more general property of simplicity,
have been fruitful for the study of classes of zero-
entropy maps, [?, ?].

Ornstein’s map has no roots “because” it com-
mutes only with its powers. An entirely different
type of rootless T was constructed in [?] via an al-
gebraic automorphism-extension; the commutant
of this T is uncountable.

The following overview uses topological terms
almost-open, meager, residual ( =generic), coarse
topology and BaireCat space. These will be de-
fined further below.

Genericity. What happens generically for
transformations on a Lebesgue probability space
(I, µ)? We ask this question with respect to
the standard coarse topology on Ω, where Ω
is the group –under composition– of (invertible

measure-preserving) transformations on I.
It follows from the Weak-Closure theorem of [?]

that no rank-1 map has a cartesian square root.
Since Rank-1 is generic,♥1 only a meager set of
transformations in Ω can have a cartesian square
root.

In contrast, the goal of this article is to show
that possessing composition roots is generic. To
this end, let ℘e:Ω→Ω denote the eth-power map
S 7→ Se.

1: RAO Theorem (Roots of All Orders). The set of

♥1This is implicit in [?, P.65–68], and also follows from
the Rohlin lemma. Several equivalent definitions of rank-1
appear in the introduction of [?].
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transformations with roots of all orders,

Rao :=
∞⋂
e=2

℘e(Ω) ,

is Ω-residual. ♦

It suffices to show that ℘e(Ω) is residual, for
each exponent e. Most of the ideas appear in the
e = 2 case, so we henceforth let ℘ be the squaring
map ℘2, and endeavor to show that

Squares := ℘(Ω), is residual.ζ1:

The sequel will reduce this (ζ1), in a series of
steps, to an assertion (ζ4). Here is a roadmap.

§Outline

A tool that we need is the following special case
of the Zero-One Law for genericity. In the termi-
nology of [?], a subset P ⊂ Ω is dynamical if

i : It is isomorphism-invariant: Whenever a
transformation T ′ is isomorphic to a T ∈ P,
then T ′ itself is in P.

ii : It is sufficiently measurable: P is an almost-
open subset of Ω.

2: Zero-One Lemma ([?, P.232]). Each dynamical
property P ⊂ Ω is either meager or residual. ♦

Miscellany. Use “x := foo” or “foo =: x”
to mean that foo is the definition of sym-
bol x. When defining a term, we use a bold-
face italic font, whereas just italics indicates
emphasis. We use the small-caps font to indicate
the set of objects satisfying a property, e.g, Rao,
Rank-1, Squares —and, later, WeakMixing
and LocDen.

Use A r B for the difference of two sets.
Use A 4 B for the symmetric difference [A r
B]∪ [BrA]. For real numbers a and b, let [a .. b)
denote the “interval of integers” [a, b) ∩ Z.

Employ K •| L for “K divides L”, and use L |•
K for “L is a multiple of K”.

To indicate a map from a set to itself, we may
write f :X � instead of f :X→X.

Topological Preliminaries

On a set X, a family {Wn}∞n=1 of topologies en-
genders the coarsest (fewest open sets) topology, X,
such that each Wn ⊂ X. This X is generated by
finite intersections Un1 ∩ . . . ∩ UnK

, where each
Un ∈Wn.

Suppose further, for each X-open set X ′ and
point z ∈ X ′, that the following holds.

For all sufficiently large n, there is a Wn-
open set Un for which z ∈ Un ⊂ X ′.

3:

If so, say that “sequence (Wn)∞n=1 tends to X”
and write Wn ↗ X.

For a pseudo-metric d (a symmetric mapping

d:X×X→[0,∞) satisfying the triangle inequality, but al-

lowing d(x, z) = 0) and point z ∈ X, use d-Ballε(z)
to mean the set of x for which d(x, z) < ε.

Now suppose that dn is a pseudo-metric on X,
with Wn its topology comprising all unions of dn-
balls. If each dn is bounded by 1, then topology
X is realized by pseudo-metric

m :=
∞∑
n=1

1

2n
dn .4:

The next two headings will develop the requisite
topological notions to prove (ζ1).

The Coarse Topology, C, on Ω

Since each two non-atomic Lebesgue probability
spaces are isomorphic, henceforth take I to be the
half-open interval [0, 1) with Lebesgue measure µ.
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The coarse topology on Ω, call it C, is the topol-
ogy in which transformations τj approach T iff:

For each measurable set E ⊂ I:

µ
(
τ 1
j (E) 4 T 1(E)

)
→ 0 , as j↗∞.

Said differently, the coarse topology on Ω is sim-
ply the strong operator topology with each trans-
formation T ∈ Ω regarded as a unitary operator
on `2(µ).

A metric m realizing C

In the sequel, let interval mean a non-void half-
open set [a, b) ⊂ I. A partition Q decomposes I
into equal-length subintervals,

Q = Qk :=
{[

0, 1
k

)
,
[
1
k
, 2
k

)
, . . . ,

[
k−1
k
, 1
)}

,

called the atoms of Q. A partition P refines Q
if each Q-atom A ∈ Q is some union of P -atoms.
The formula

dQ(S, T ) :=
∑
A∈Q

1
2
µ
(
S 1(A) 4 T 1(A)

)
5:

shows that a partition Q gives rise to a bound-
ed-by-1 pseudo-metric on Ω. Let WQ denote the
dQ-topology on Ω.

A given finite list E1, . . . , EL ⊂ I of (measurable)
sets can be ε-approximated, taking a k sufficiently
large, by various unions of Qk-atoms. n Conse-
quently:

Sequence (WQn)∞n=1 tends to C .??′:

Letting dn denote dQn in (??), the resulting
pseudo-metric m is a metric which realizes the
coarse topology on Ω.

6: Lemma. Our space (Ω,C) is a Polish (non-

void, and homeomorphic to a complete separable metric

space) topological group. In particular, each power
map ℘e is continuous. ♦

Sketch of proof. It is not difficult to show that Ω
is complete with respect to the metric

T, S 7→ m(T, S) + m(T 1, S 1) .

And this metric still realizes C, since the mapping
S 7→ S 1 is continuous, as now shown: It suffices
to take transformations σj→S and fix a set E,
then establish that σj(E) tends to S(E). But let-
ting A := S(E), note that

µ
(
σj(E) 4 S(E)

)
= µ

(
E 4 σ 1

j S(E)
)

= µ
(
S 1(A) 4 σ 1

j (A)
)
,

which certainly goes to zero as j →∞.
To show that the group-multiplication is con-

tinuous, we need only measure convergence on a
fixed set A. To this end, let Jτ, σK abbreviate

µ
(
τ 1(A) 4 σ 1(A)

)
.

Fix maps T and S, let E := T 1(A), and consider
transformations τj → T and σj → S. Evidently[[
τjσj, TS

]]
6

[[
τjσj, Tσj

]]
+
[[
Tσj, TS

]]
=
[[
τj, T

]]
+ µ

(
σ 1
j (E) 4 S 1(E)

)
.

And these two terms go to zero, as j →∞.
Finally, as detailed in Proposition ??, below,

those transformations which permute the atoms
of some partition form a set which is Ω-dense and
countable. Hence Ω is separable. (For further

discussion, see [?, pp.62–68].) �

The Baire Necessities

Recall that a subset B ⊂ X of a topological
space is nowhere-dense if its closure has no in-
terior. Less stringent, B is meager if it equals
some countable union of nowhere-dense sets. Fi-
nally, a subset E ⊂ X is residual if its comple-
ment X r E is meager.

Filename: Article/34Genericroots/roots.latex



Prof. JLF King Setting up property α(z,K) Page A4 of ??

Say that X is a BaireCat space if the conclu-
sion of the Baire Category Theorem holds in this
form:

Each residual subset of X is dense.

Since Ω is completely metrizable, it is BaireCat.♥2

For the Zero-One Law to apply to Squares,
we need to know that Squares fulfills the stated
measurability condition. Say that a subset
B ⊂ X is almost-open if it is “almost” equal
to some open set U —in the sense that the sym-
metric difference B 4 U is meager. It is straight-
forward to show that the almost-open sets form
a sigma-algebra. A fortiori the open sets are al-
most-open, so AlmostOpen includes♥3 the Borel
sigma-algebra. Here is the non-trivial fact that we
need.

7: Theorem. Each analytic set (the forward image

of a Borel set, under a continuous map between Polish

spaces) is almost-open. ♦

Proof. See [?, pp. 482, 92]. �

This result comes into play as follows. Since ℘
is continuous, the set of pairs (R, T ) with R2 = T
is a closed subset of Polish space Ω × Ω. And
Squares is its continuous image under

Ω×Ω→ Ω : (S, T ) 7→ T ,

the projection map. Thus Squares is analytic,
hence almost-open. So by Zero-One, we need but
establish that

Squares is non-meager.ζ2:

♥2A standard term is Baire, rather than BaireCat; alas,
the modifier “Baire” is used inconsistently. It has three dis-
tinct meanings in these usages: “a Baire space”, “a Baire
set”, “a set with the property of Baire”. Unfortunately a
Baire set is not –with the standard terminology– a Baire
space in the induced topology.
♥3This inclusion is proper: Computing cardinalities

shows that

#AlmostOpen = #Meager = 2R ,

whereas #Borel only equals R.

Our next step is to develop a condition which
guarantees non-meagerness of a continuous image.

Local density. Suppose that f :X→Λ is a map
between topological spaces. A point z ∈ X is
locally-dense (with respect to f) if:

Each neighborhood of z has f -image which
is dense in some neighborhood of f(z).

Let LocDen(f) denote the set of locally-dense
points. The following neat observation is due to
Randall Dougherty.

8: Dougherty’s Lemma. Consider f :X→Λ, a con-
tinuous map from a BaireCat space to a topolog-
ical space. If LocDen(f) is X-dense, then f(X)
is not Λ-meager. ♦

Proof. Were f(X) meager, then we could cover
it by a union

⋃∞
1 Γn of closed sets, each without

interior. Thus each Cn := f 1(Γn) is closed, and⋃∞
1 Cn covers X.
The interior, U , of a Cn, has its f -image inside

the closed interiorless set Γn, so no point of U is
locally-dense. Thus Cn has no interior, hence is
meager. Consequently X is not BaireCat. �

Remark. The same argument shows that the
f -image of each X-residual set is not Λ-meager.�

Setting up property α(z,K)

Topologically, the last tool we need is the lemma
below. The baroqueness of its formulation is
adapted to its use in §??.

Consider a map between topological spaces,

f :(X,X)→(Λ,L) ,

as well as topologies Wn ↗ X and topologies
Kn ⊂ L. For a point z ∈ X and positive inte-
ger K, define this property.
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Property α(z,K): Given a WK-open set U 3
z there exists an L-dense set ∆ ⊂ Λ and a KK-
open set Υ 3 f(z) so that:

f(U) ⊃ Υ ∩∆ .α′:

9: Baroque lemma. With notation from imme-
diately above, suppose that α(z, n) holds for in-
finitely many n. Then z is locally-dense for f . ♦

Proof. Fix an arbitrary X-open set Z 3 z.
Among those n fulfilling α(z, n), take n large

enough to produce a Wn-open set U for which
z ∈ U ⊂ Z. Then take subsets ∆,Υ ⊂ Λ as
α(z, n) provides. A fortiori Υ is L-open, so Υ∩∆
is L-dense in Υ. Taking L-closures, then,

f(Z) ⊃ f(U) ⊃ Υ ∩∆ ⊃ Υ 3 f(z) ,

as was desired. �

§B Combinatorics

The foregoing discussion will allow us to make
“local-density” a purely combinatorial mat-
ter. Henceforth, dk denotes pseudo-metric dQk

from (??).

Permutations

A permutation of [0 .. K) will be called aK-perm.
If aK-perm π:[0 .. K) � happens to comprise a sin-
gle cycle –necessarily of length K– then we call π
a K-cycle. Each K-perm π has an associated
interval-exchange map Gπ ∈ Ω which rigidly per-
mutes the atoms of partition QK according to π.
Specifically, letting A` be the atom [ `

K
, `+1
K

):

Gπ(x) :=
π(`)

K
+ [x− `

K
] , for x ∈ A`.

Call transformation Gπ a K-shuffle, or just a
shuffle. Evidently if T is a K-shuffle and K di-
vides L, then T is also an L-shuffle.

As an example, take K = 5 and T := Gπ, where
π maps 2 to 0 to 4 to 2, and π exchanges 1 and 3.
Then

(2 0 4) (1 3)∗:

is the cycle structure of π. Call (∗) also “the 5-
structure of T ”. In contrast, the 10-structure
of T splits each cycle into two copies:

(4 0 8)(5 1 9) (2 6)(3 7) .

If the K-structure of T is a single cycle then we
call T a K-solo. The Rohlin lemma or [?, P.65]
implies the following.

10: Proposition. The set of K-solos, with K
ranging over an infinite set of positive integers, is
C-dense in Ω. ♦
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Creating combinatorial roots

Given an L-perm λ, say that an L′-perm ρ
is a “combinatorial nth root of λ” if L′ |•
L and, for the corresponding transformations,
[Gρ]

n equals Gλ.
We now construct combinatorial square-roots.

Consider an L-sequence c = c0 . . . cL−1 of num-
bers. Let �c�3 be the sequence rotated by 3 posi-
tions. Thus

�c�3 := c3c4c5 . . . cL−1c0c1c2 .

For r ∈ Z, define the rotation �c�r analogously;
so �c�0 = c.

A linear expression such as “2c + 5” shall mean
the L-sequence d, where each d` := 2c` + 5.

Given two L-sequences a and c, let

a : c := a0c0a1c1a2c2 . . . aL−1cL−1

denote their alternation.

The Weave operation. From an L-cycle λ, we
can produce a square root of the corresponding L-
solo Gλ by cutting its Rohlin stack into left/right
halves, rotating one half (perhaps), and then zig-
zagging. We now describe this operation directly
on λ.

Arbitrarily cut cycle λ to produce

an L-sequence c0c1c2 . . . cL−1, with each
c` ∈ [0 .. L); here λ(c`) = c`⊕1, where ⊕
denotes addition modL.

11:

For a “rotation number” r ∈ Z, define this cycle,

Weaveλ(r) := (2c : �2c + 1�r) .

The resulting cycle has length 2L, and does not
depend on where λ was cut.

12: Example. Suppose that L = 7 and sequence
c is 0246135. Zig-zagging gives this 14-cycle

Weaveλ(0) = (0 0̇ 2 2̇ 4 4̇ 6 6̇ 1 1̇ 3 3̇ 5 5̇ ) ,

where c denotes 2c, and ċ means 2c+ 1. Rotating
the dotted numbers by 4 places produces

Weaveλ(4) = (0 1̇ 2 3̇ 4 5̇ 6 0̇ 1 2̇ 3 4̇ 5 6̇ )

= (0 3 4 7 8 11 12 1 2 5 6 9 10 13) .

For ρ := Weaveλ(r), observe that the cycle
structure of ρ2 is (2c)(2c + 1); this, regardless of
what r equals. And since the `nd atom of parti-
tion QL is the union of atoms 2` and 2`+1 of Q2L,
we see that transformation [Gρ]

2 equals Gλ.

13: Root Lemma. For an L-cycle λ and rotation
number r ∈ Z, the 2L-cycle Weaveλ(r) is a com-
binatorial square-root of λ. ♦

Computing dK-distance

We now convert distance between shuffles to a
computation directly with permutations. The no-
tation for the following lemma appears anon.

14: Frequency Lemma. Suppose that π is an K-
perm and ρ is an L-perm, where L |• K. Then

dK(Gπ, Gρ) = Dπ(ρ) .

Atoms of partitions. Enumerate the atoms
of QK as A0, . . . , AK−1 and the atoms of QL as
C0, . . . , CL−1. For the nonce letting V denote the
ratio L

K
, remark that each atom Ak is the disjoint

union

Ak =
V k+[V−1]⊔
`=V k

C` ,∗:

of V consecutive QL-atoms. For an index `, let ̂̀
be the corresponding value of k in (∗). That is,

̂̀ :=
⌊
` · K

L

⌋
,

where b·c is the floor (greatest integer) function.
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Measuring disagreement. Use Dπ(ρ) to mea-
sure the frequency of discord between π and ρ, as
measured on the partition, QK , that π permutes:

Dπ(ρ) := 1
L
·#
{
` ∈ [0 .. L)

∣∣∣∣ ρ̂(`) 6= π(̂̀)
}
.

??′:

Example ??, revisited. Let permutation π be the
7-cycle (0123456). Its square is λ = (0246135) of
Example ??. The 14–structure of Gπ is

π = (0 2 4 6 8 10 12)(1 3 5 7 9 11 13) .

The cycle ρ := Weaveλ(4) of Example ?? is

ρ = (0 3 4 7 8 11 12 1 2 5 6 9 10 13) .

Evidently, Gρ 6= Gπ. Although d14(Gρ, Gπ) is pos-
itive, the d7 distance is zero. To see this, apply
the reduction ` 7→ ̂̀ =

⌊
` · 7

14

⌋
to the preceding

two displays. This results in:

π : (0 1 2 3 4 5 6)(0 1 2 3 4 5 6)

ρ : (0 1 2 3 4 5 6 0 1 2 3 4 5 6)

Thus Dπ(ρ) = 0.
When we apply this observation, in (ζ4), our

cycle λ will not be π2, but rather will be a pertur-
bation of π2. �

Proof of (??), the Frequency Lemma. For speci-
ficity, take K = 21. Define transformations

T := Gπ and R := Gρ ,

and have P denote partition Q21.
Given two P -atoms, say, A8 and A17, let F be

the set of ` ∈ [0 .. L) with ̂̀= 8. Enumerating the
QL-atoms as C0, . . . , CL−1, then, A8 is the disjoint
union

⊔
`∈F C`. Thus

µ
(
R(A8) ∩ A17

)
=

∑
`∈F

µ
(
R(C`) ∩ A17

)
= 1

L
·#
{
` ∈ F

∣∣∣ ρ̂(`) = 17
}
.

Replacing “17” by π(8) and “A17” by T (A8) gives
this:

µ
(
R(A8) ∩ T (A8)

)
= 1

L
·#
{
` ∈ F

∣∣∣ ρ̂(`) = π(̂̀)
}
.

Substituting k for “8”, then summing over all k
in [0 .. 21) yields that∑

A∈P
µ
(
R(A) ∩ T (A)

)
= 1

L
·#
{
` ∈ [0 .. L)

∣∣∣ ρ̂(`) = π(̂̀)
}
.

∗:

With B denoting T (A), subtract each side of (∗)
from 1 to arrive at this:

Dπ(ρ) = 1−
∑

B∈P
µ
(
R(A) ∩B

)
=
∑

B

[
µ(B)− µ(R(A) ∩B)

]
=
∑

B

1
2
µ
(
R(A) 4 B

)
;

this last, since R(A) and B have the same µ-mass.
The denouement, by applying R 1, is that

Dπ(ρ) =
∑
B∈P

1
2
µ
(
T 1(B) 4 R 1(B)

)
,

which is indeed the definition of dK(T,R). �
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Reduction to Combinatorics

Here is the standing condition which is in force for
the remainder of §??.

We have integers K |• J , with J odd, and
have a J-solo T . Necessarily, T equals some shuf-
fle Gπ, where π:[0 .. K) � is a permutation com-
prising K

J
many J-cycles. Define

σ := π2 = π ◦ π and

S := T 2 note
=== Gσ ,

16:

the corresponding squares.

Since J is odd, note that permutation σ, like π,
is made up of K

J
many cycles, each of length J .

Courtesy of (??), the collection of odd-solos is
Ω-dense. Consequently:

If each odd-solo is locally-dense for ℘,
then Squares is Ω-residual.

ζ3:

This follows from (??) and (ζ2).

Describing property β(π,K). Let (×K)-
cycles be the infinite family of cyclic per-
mutations λ:[0 .. L) � taken over all lengths
L = K, 2K, 3K, 4K, . . . .

Here is a combinatorial property that the
π,K pair might have.

Property β(π,K): Given ε there is a δ > 0
so that for each (×K)-cycle λ:

There is a combinatorial square-root ρ,
of λ, for which
Dσ(λ) < δ =⇒ Dπ(ρ) < ε.

β′:

Roughly: “Each perturbation λ of the square
of π, has a combinatorial square root close to π.”

17: LocDen Combinatorial Lemma. If each pair π
and K has property β(π,K), then Squares is
residual in Ω. ♦

Proof. Letting T denote Gπ, we will first show
that

β(π,K) =⇒ α(T,K) ,??′:

by letting d mean dK , and then applying Prop-
erty α to the squaring map via the correspondence
below.

General: f :X→Λ Squaring: ℘:Ω→Ω

Wn ↗ X dn-topologies↗ C

Kn ⊂ L dn-topology ⊂ C

U, Υ d-Ballε(T ), d-Ballδ(S)

Establishing (??′). A d-open set U 3 T may
freely be shrunk to some d-Ballε(T ), for a suffi-
ciently Lilliputian ε. Property β(π,K) produces
a number δ for which (β′) holds. Happily,

∆ :=
{
Gλ

∣∣∣ λ is a (×K)-cycle
}

is C-dense, thanks to (??). By definition,

Υ := d-Ballδ(S)

is a d-open neighborhood of ℘(T ).

Using the Frequency lemma twice, (β′) says that
for each (×K)-cycle λ,

Gλ ∈ Υ =⇒ Gρ ∈ d-Ballε(T ) .

Thus ∆ ∩Υ ⊂ ℘(U), as required by (α′). ♦

Second step. Given that each β(π,K) holds,
we now know that each α(T,K) holds. Fixing T
and varyingK over the multiples of J , the Baroque
lemma guarantees that T is locally-dense for ℘.
Courtesy of (ζ3) then, Squares is Ω-residual. �

The upshot, (ζ4). We have navigated from
(ζ1) to this becoming our goal:
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Given ε there is a δ so that for each
L |• K and each L-cycle λ:

Dσ(λ) < δ =⇒ Dπ(ρ) < 2ε

where ρ is the 2L-cycle Weaveλ
(
J+1
2

)
.

ζ4:

The above assertion is a specification of property
β(π,K), since for an arbitrary integer r, the cy-
cle ρ := Weaveλ(r) is a combinatorial square root
of λ.

Establishing (ζ4)

Given a K-perm σ and an L-cycle λ, with L |•
K, we ask: How does frequency-of-disagreement
behave relative to the Weave operation?

The results that we need, (??) and (??), arise
from substrings of λ which look like pieces of σ.

The σ-blocking of a cycle λ

Cut λ to produce a sequence b, with each num-
ber b` ∈ [0 .. L) and with λ(b`) = b`⊕1; here, ⊕
means addition modL. Note that from its defini-
tion, (??′), computing Dσ(λ) does not require all
the information in b. Indeed

Dσ(λ)
note
=== 1

L
·#
{
` ∈ [0 .. L)

∣∣∣ c`⊕1 6= σ(c`)
}

where c is the QK-name of b; that is,

c` := b̂`
note
===

⌊
c` · KL

⌋
.18:

At this juncture, let A ⊂ [0 .. L) denote the
positions of agreement —the set of indices ` such
that c`⊕1 = σ(c`); thus #A/L equals 1 −Dσ(λ).
Decompose A into a disjoint union,

A =
⊔N

n=1

[
`n .. rn

)
,

of half-open intervals (of integers), satisfying 0 6
`1 < r1 < `2 < r2 < · · · < rN 6 L. Each interval

[` .. r) is called a σ-block of λ. This decomposi-
tion is unique.♥4

Given a positive integer M , call a σ-block [` .. r)
a σ-M-block if its length dominates M ; that is,
if r − ` > M . Thus the “σ-M -blocking of λ”
comprises all the σ-M -blocks. Let

µ(σ-M -blocks on λ)

denote the probability that an index in [0 .. L) is
in some σ-M -block. Evidently M = 0 yields the
full σ-blocking, and so

µ(σ-0-blocks on λ) = 1−Dσ(λ) ,

by definition.

19: Blocking Lemma. With σ, λ, L and M as
above,

a: 1−Dσ(λ) > µ(σ-M -blocks on λ).

b: µ(σ-M -blocks on λ) > 1−MDσ(λ).

Proof of (b).A miracle occurs: Suppose that every
position r ∈ [0 .. L) of disagreement, cr⊕1 6= σ(cr),
happens to be the end of a σ-block [` .. r) whose
length, r−`, is exactly M−1. In this one case, the
quantity 1−µ(σ-M -blocks) is just large enough to
equal M times the probability of a disagreement.
So

1− µ(σ-M -blocks on λ) 6 M ·Dσ(λ) ,

is the general non-miraculous assertion. �

♥4There is an exceptional case: When Dσ(λ) is zero,
A is the entire cycle [0 .. L) and so A does not break into
intervals. Since this exceptional case makes the subsequent
estimate even better, we can safely ignore it.

With Dσ(λ) positive, we can have chosen to cut λ so
that no σ-block “wraps around” the end of c; that is, so
that c0 6= σ(cL−1). Once c has been so chosen, the decom-
position is unique.
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Upper-bounding disagreement

To establish (ζ4), there is no loss of generality in
taking particular values for the parameters of our
standing condition (??) and so we fix

J = 7 and K = 21 .

In consequence, π comprises three 7-cycles.
For specificity, take one of the 7-cycles to be

0→ 1→ 2→ 3→ 4→ 5→ 6

(and 6→ 0). The corresponding 7-cycle of σ is

0→ 2→ 4→ 6→ 1→ 3→ 5 .20:

Given an L-cycle λ with Dσ(λ) small, define its
QK-name c as we did in the (??) paragraph.

σ-M-blocking λ. Having frozen a value for M ,
there are three “types” of σ-M -block on λ; one
for each of the three 7-cycles of σ. Suppose that
[` .. `+M) is a σ-M -block of type (??). That
means, letting s denote the sequence 0246135,
that

c[` .. `+M) = sssssss · · · sss︸ ︷︷ ︸
M positions

,

where this s · · · s represents a concatenation of
copies of s, possibly ending (starting) with an ini-
tial (terminal) segment of s. Such segments have
no effect on the observation below and so, for sim-
plicity, the notation below presumes that “s · · · s ”
is exactly a concatenation of copies of s.

Thanks to this presumption, the last position
of s · · · s is occupied by ‘5’. This is a “position
of agreement”, so ‘5’ must be followed by ‘0’. We
will write this trailing zero in slanted and enlarged
font. Thus, along the name c, we witness occur-
rences of

?sssssss · · · sss0︸ ︷︷ ︸
M+2 positions

,

where ‘? ’ indicates an unknown symbol in [0 .. 21).

π-M ′-blocking ρ. Since J+1
2

= 7+1
2

= 4, we
consider ρ := Weaveλ(4). How does the M -block
s · · · s appear on the ρ cycle?

Figure ?? shows part of the Weaveλ(4) cycle.
The σ-M -block upstairs zips together with the
σ-M -block downstairs to form a π-block of length
at least 2M − J .

The upshot is that for M an arbitrary positive
integer,

µ(π-M ′-blocks on ρ) >
M ′

2M
·µ(σ-M -blocks on λ) ,

22:

where M ′ is 2M − J .

Completing the proof of (ζ4): Picking δ

Since J , K and ε are known in advance, we can
take M sufficiently Brobdingnagian that

J

2M
< ε ; then let δ :=

ε

M
.23:

Consider now an L-cycle λ, with L |• K and with
Dσ(λ) < δ. Courtesy of (??,??) above,

µ(π-blocks on ρ) >

[1− ε] ·µ(σ-M -blocks on λ) .

Furthermore,

µ(σ-M -blocks on λ) > 1−MDσ(λ)

> 1− ε ,

by (??b) and (??). Together, the two preceding
displayed inequalities yield that

1−Dπ(ρ) > [1− ε][1− ε] > 1− 2ε .

Consequently 2ε > Dπ(ρ), which establishes (ζ4)
and completes the proof that Squares is residual
in Ω.
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? 0 2 4 6 1 · · · 4 6 1 3 5 0
↗ ↓ ↗ ↓ ↗ ↓ ↗ ↓ ↗ ↓ ↗ ↓ · · · ↓ ↗ ↓ ↗

? 0 2 4 6 1 3 5 0 2 · · · 5 0

Fig. 21: Part of the Q21-name of ρ: The upper line of shows the M + 2 string ?s · · · s0 which, in the lower
line, is shifted left by 4 positions. The arrows show how ρ weaves between the two lines.

§C Handling a general exponent e

We sketch, for a general exponent 2 6 e <∞, the
argument that ℘e(Ω) is residual. For simplicity
of notation, however, we will take e = 17; so each
“16”, below, represents “e− 1”.

Say that a positive integer J is good if J ≡ −1,
modulo 17. Here, the good-cycles will play the
role that the odd-cycles played in §??.

Creating combinatorial roots [bis]

Handed 17 sequences, a,b, . . . , c, each of length L,
define their alternation a : b : . . . : c to be the
sequence

a0b0...c0a1b1...c1a2b2...c2 · · · aL−1bL−1...cL−1 ,

whose length is 17L.
Given an L-cycle λ, cut it to produce an L-se-

quence c, as in (??). As before, a linear expression
such as “17c + 5” means the L-sequence whose
`nd number is 17c` + 5. For arbitrary rotation
numbers r1, . . . , r16, define

ρ := Weaveλ(r1, r2, . . . , r16)

to be the cycle

(17c : �17c + 1�r1 : �17c + 2�r2 : . . . : �17c + 16�r16) ,

whose length is 17L. Independent of what the
rotation numbers are, the cycle structure of the
composition ρ17 is

(17c)(17c + 1)(17c + 2) . . . (17c + 16) .

Thus transformation [Gρ]
17 indeed equals Gλ, so

permutation ρ is a combinatorial 17th root of λ.

Standing Condition (??[bis]). We set σ := π17

and S := T 17. As before, π comprises K
J

many J-
cycles; and so does σ, since J is relatively prime
to 17. We need but establish this version of (ζ4):

Given ε there is a δ so that for each
L |• K and each L-cycle λ:

Dσ(λ) < δ =⇒ Dπ(ρ) < 2ε

where ρ is the 17L-cycle

Weaveλ
(
r, r, r, 16. . . , r

)
with r := J+1

17
.

ζ4[bis]:

With this value of r, the Reader may con-
vince himself that the following analog of inequal-
ity (??) succeeds: For M arbitrary:

µ(π-M ′-blocks on ρ) >
M ′

17M
·µ(σ-M -blocks on λ) ,

with M ′ := 17M − F , where F is some number
which depends neither on L nor M . A straight-
forward estimate♥5 allows F = [J + 1] · 17.

The final step is to grab an M sufficiently large
that

F

17M
< ε ; then let δ :=

ε

M
.

As before 1−Dπ(ρ) > 1− 2ε, which delivers the
goods on (ζ4[bis]).

♥5In general, F = [J + 1]e works. A fastidious analysis
would justify F = [J − 2][e− 1], once M > J + 1.
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Reflections on the argument

The combinatorics used to show ℘2(Ω) residual
are elementary. The one non-elementary tool
was (??), that analytic sets are almost-open. We
could do without this theorem if we had a “yes”
to this question.

Q1: Question. Is ℘2(Ω), the set of Squares, a
Borel subset of Ω? �

In the more general setting of a Polish
semigroup, there is an example where the an-
swer is known to be “no”. Humke and Laczkovich
showed, in the Polish semigroup (under composition)
of continuous functions from [0, 1] � , that the set
of composition squares g ◦ g is not Borel. (See [?].

Also see Beleznay, [?].)

§D The power map is locally

complex

Having shown that LocDen(℘e) is dense in Ω,
one would be singularly incurious to not inquire
about density of its complement.

It turns out that the tools already developed are
sufficient to show that ℘e is “locally complex” in
the sense of (??ab), below. Part (??a) is simply
an embellishment of what we already know.

Use e
√
T to denote the collection of eth roots

of T , i.e, the closed set ℘ 1
e (T ).

Locally lacunary. With respect to a mapping
f :X→Λ, a point z ∈ X is locally-lacunary if it
is not locally-dense. Equivalently: There exists a
neighborhood of z whose f -image is dense in no
neighborhood of f(z). Let LocLac(f) denote
the set of locally-lacunary points of f .

24: Complexity Theorem. For each integer
e ∈ [2 ..∞) and transformation T , the set e

√
T

is closed and nowhere-dense in Ω. Furthermore

a: LocDen(℘e) is residual. Indeed, it is a dense
Gδ-subcollection of Ω.

b: LocLac(℘e), while meager, is dense.

Remark. Since e
√
T is closed, that it is

nowhere-dense follows immediately from noting
that WeakMixing and Rotations are disjoint
families, each of which is Ω-dense and is sealed
under taking eth roots. (With ⊕ meaning addition

mod 1, the set Rotations comprises all transformations

isomorphic to some rotation x 7→ x⊕ r, for some rotation

number r ∈ R.) �

Since LocDen(℘e) is Ω-dense, (??a) follows
from this general assertion:

25: Lemma. Suppose that f :X→Λ is continuous
map from a metrizable space X (not necessarily sepa-

rable) to a topological space Λ. Then LocDen(f)
is a Gδ-subset of X. ♦

Filename: Article/34Genericroots/roots.latex



Prof. JLF King Transmogrifying (??b) into Combinatorics Page D13 of ??

Proof. For a number α > 0, let Uα comprise
those points z ∈ X such that: There exists a
positive ε < α for which f

(
Ballε(z)

)
is dense in

some neighborhood of f(z).
Since LocDen(f) =

⋂
α↘0 Uα, it will do to

simply show that Uα is open. For demonstrat-
ing openness at a point z ∈ Uα, take an ε < α,
then an open set Υ 3 f(z) such that f

(
Ballε(z)

)
is dense in Υ. Necessarily, the intersection

I := Ballα−ε(z) ∩ f 1(Υ)

is an open neighborhood of z. We need but show
that I ⊂ Uα, as follows.

Fix a point y ∈ I and let r := dist(y, z). Then

Ballr+ε(y) ⊃ Ballε(z) ,

and so the f -image of Ballr+ε(y) is dense in Υ.
Therefore y ∈ Uα, since r + ε < α. �

Transmogrifying (??b) into Combinatorics

Following the strategy of §??, let us find a state-
ment about permutations that will imply (??b).
Also as earlier, since all the ideas appear in the
e = 2 case we let ℘ mean ℘2 from now on,

It was essential in §?? that J was odd. Here,
in §?? it is essential that J be even. Fix a large
even number J and a J-cycle π. Let σ := π2 and
have U denote this ball:

U := Ball 1
3
(Gπ) ,

where the pseudo-met-
ric used is dJ .

26:

We will show that

The ℘-image of U fails to be dense in
each and every neighborhood, Υ, of Gσ.

??′:

Using H := J/2 to denote half of J , write our
J-cycle π as

( a1b1a2b2a3b3 · · · aHbH︸ ︷︷ ︸
Some reordering of the numbers [0 .. J).

)

Its square, σ, has cycle structure (α)(β), two H-
cycles, where

α := a1a2a3 . . . aH and

β := b1b2b3 . . . bH .

We now perturb permutation σ to a nearby cy-
cle, σK .

For each integer K |• J , define a K-cycle σK to
be (AB), where

A := ααα · · ·α︸ ︷︷ ︸
K
J

copies

and B := βββ · · ·β︸ ︷︷ ︸
K
J

copies

.??′:

27: Lemma. In the coarse topology, GσK → Gσ

as K↗∞. ♦

Sketch of proof. Since the dN -topologies ↗ C, we
need but establish that

lim
K→∞

dN
(
GσK , Gσ

)
= 0∗:

for each N in some sequence N → ∞; so fix
an N |• J . Since dK ↗ C, we only need prove (∗)
for, say, those values K |• N . Writing K = kN ,
then,

dN
(
GσK , Gσ

)
6

1

k · Length(α)
=

1

kH
,

courtesy the Frequency Lemma argument. �

Defining property γ(π,K). In what follows,
parameters J , π and K are implicit. We write σ
for π2. Phrases such as “For each/every/all ρ. . . ”
shall mean:

“For each L |• K and each L-
cycle ρ. . . ”.

Lastly, λ is another name for ρ2.
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Property γ(π,K): There exists a positive δ so
that, for each ρ:

If DσK (λ) < δ ,

then Dπ(ρ) > 1
3
.

Remark. The value 1
3
, here and in (??), is concep-

tually 1
2
. We use 1

3
to allow room for edge effects

in the estimate to follow. �

28: LocLac Combinatorial Lemma. If γ(π,K)
holds for all large (or just infinitely many) K |• J ,
then transformation Gπ is locally-lacunary for the
squaring map. ♦

Proof. We verify (??′). Let δ(·) be a function
going to zero sufficiently eagerly that δ < 1

K
and

γ(π,K) holds, where –here and henceforth– we
abbreviate δ = δ(K).

Centered atGσK , we would like to have a ball ΓK
of transformations so that for each λ:

Gλ ∈ ΓK =⇒ DσK (λ) < δ .∗∗:
So, courtesy the Frequency Lemma (??), letting

ΓK := dK-Ballδ(K)(GσK ) .

does the trick.
Handed an arbitrary C-open set Υ 3 Gσ,

lemma ?? assures us that the ΓK ball lies within
Υ, once K is Brobdingnagian. (This uses that the

dn-topologies tend to C.) So establishing that ℘(U)
misses ΓK is enough to confirm (??′). In conse-
quence, this statement,

The intersection U ′ := ℘ 1(ΓK) ∩ U is
empty,

is what we wish to substantiate.
Restating (∗∗), if Gρ ∈ ℘ 1(ΓK) then DσK (λ) <

δ. So property γ(π,K) delivers that Gρ /∈ U .
Thus the C-dense set{

Gρ

∣∣∣∣ ρ is an L-cycle, for
some L |• K

}
is disjoint from U ′. In light of the fact that U ′ is
C-open, it must of needs be empty. �

Demonstrating γ(π,K) for large K

Choose an L |• K and an L-cycle ρ. Similar to the
paragraph of (??), cut ρ to produce a QJ -name

c = c0c1c2c3 · · · cL−1 ,

and let ⊕ mean addition moduloL. Recall that
1−Dπ(ρ) is the probability that an index ` ∈
[0 .. L) satisfies

π(c`) = c`⊕1 ,

that is, is a position of agreement of the QJ -
structures of ρ and π.

Here now is the idea behind the proof
of γ(π,K).

29: Lemma. For each ε positive, for all large K,
for each cycle ρ with DσK (ρ) < δ, the following
holds:

With probability exceeding 1 − ε, if an
index ` is a position of agreement of ρ
with π, then ` ⊕ K is a position of
disagreement.

??′:

In particular, property γ(π,K) holds once ε is
small enough. ♦

Proof of (??). Call a word w an “AB-block” if,
using the words from (??′), it is a concatenation

w = ABABAB · · ·AB

of consecutive copies of AB, possibly starting or
ending with a partial copy.

Recall that A is a concatenation of copies of
word a1 · · · aH , as B is of b1 · · · bH . Let a prime, ′,
flip a letter to the opposite letter having the same
index; so a′5 means b5, and b′5 means a5.

Since words A and B each have length K/2, ev-
ery AB-block w is anti -periodic with period K/2,
in this sense:

wi+K
2

= w′i ,

whenever both indices i and i+ K
2

are in w.
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σK-blocking the cycle λ

The QJ–structure of λ = ρ2 is (cEven)(cOdd),
where

cEven := c0c2c4c6 · · · cL−2
cOdd := c1c3c5c7 · · · cL−1 .

Let the symbol cEven
[7 .. 13] mean the subsequence

of cEven with indices in the interval [7 .. 13]. In
this example,

cEven
[7 .. 15] = c8c10c12c14 and cOdd

[7 .. 15] = c7c9c11c13c15 ,

where, for cOdd
[7 .. 15], we have made the analogous

definition.
Now suppose K = 6. Then walking K

2
= 3 steps

along cOdd brings us from c7 to c13, i.e, to c7+K . So
the above antiperiodicity give this generalization,
for every ` ∈ [0 .. L):

If cEven
[` .. `+K] and cOdd

[` .. `+K] are each AB-blocks,
then

c`+K = c′` .

Lower-bounding disagreement

Since ε andK are known in advance, we can take δ
small enough♥6 that inequality DσK (λ) < δ im-
plies the following:

With probability exceeding 1− ε, an index `
in [0 .. L) satisfies the following:

Sequences cEven
[` .. `+1+K] and cOdd

[` .. `+1+K]

are each AB-blocks.
∗:

Finally, suppose that such an ` is a position of
agreement of ρ with π. If c` is in A, say c` = a5,
then c`+1 = π(a5) = b5. Consequently, by (∗),

c`+K = a′5 = b5 and

c`+1+K = b′5 = a5 .

♥6Letting δ be
[
ε/[20K]

]4
works. This uses the argument

of the Blocking lemma, (??b).

But π(c`+K) = π(b5) = a6 (well. . . the 6 is actually to

be taken modulo H). Consequently,

π(c`+K) 6= a5 = c`+1+K .

Thus position `+K is a position of disagreement
between ρ and π.

A similar argument goes through if c` is in B.
Thus we have established (??′). This wraps up
the proof of (??a) of the Complexity theorem. �
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§E Egress

Questions in Newtonian mechanics lead to dy-
namical systems in which “time is real”; the sys-
tems are R-actions (flows ϕ:I×R→I) rather than the
Z-actions studied in the current article.

Q2: Question. Does the generic transformation
embed in a flow? Is this set{

T
∣∣∣ T (·) = ϕ(·, 1) for some flow ϕ on I

}
of transformations, a residual subset of Ω? �

For such a T , the set of those transformations S
which commute with T , the commutant of T , in-
cludes a copy of R. So an inexpensive “no” to (Q2)
would follow from showing that only a meager set
of T have an uncountable commutant.

Alas, the generic T is rank-1 and rigid, thus nec-
essarily has commutant which is uncountable.♥7

Q3: Does the generic T embed in a (measure-

preserving) Q-action? �

For a T ∈ Rao, how close does the RAO The-
orem come to answering (Q3)? Certainly, for
each n, we can pick an nth root Rn of T , then fix
a set S ⊂ [2 ..∞) and look at the group GS ⊂ Ω
which is generated by {Rn}n∈S. However, the
RAO theorem gives no guarantee that Rn goes to
the identity, as n → ∞. So RAO does not give
us control, in terms of S solely, on the topology
of GS. This is the reason that the groups below
are equipped with the “no restriction” (i.e, discrete)
topology.

Fixing K, let QK be the additive subgroup of
the rationals generated by 1/pK as p ranges over
all the primes; equip QK with the discrete topol-
ogy. Call each pK a “K-prime ”.

Evidently QK comprises all ratios

n
/

[pk11 p
k2
2 · . . . · p

kJ
J ] ,

♥7Katok and Stepin showed, in [?], that “rank-1 and
rigid” is generic, although using a different language. Def-
initions of rank-1 and of rigid appear in [?]. That rigidity
implies uncountable commutant appears in [?] and [?].

where n is an arbitrary integer and each kj ∈
[0 .. K].

30: Theorem. The generic T extends to a QK-
action. ♦

Proof. It suffices to fix a T in

WeakMixing ∩ Rank-1 ∩ Rao31:

and extend it to a QK-action.
For each K-prime γ, let Rγ be a γth root of T .

Let GK be the subgroup of (Ω, ◦) generated by
the Rγ transformations. Since T is rank-1, its
commutant is abelian♥8 and thus GK is abelian.

To show that GK is isomorphic to QK , define
a map ψ from (GK , ◦) to (QK ,+) as follows. For
each finite set of K-primes {α, β, . . . , γ}, and of
integers a, b, . . . , c, let

ψ
(
Rα

a ◦Rβ
b ◦ . . . ◦Rγ

c
)

:= a
α

+ b
β

+ · · ·+ c
γ
.

That this ψ is a group isomorphism will follow
immediately once ψ is shown to be well defined.

To address this latter aim, suppose that expo-
nents a, . . . , c cause S := Rα

a ◦ · · · ◦Rγ
c to be the

identity transformation. Letting L be the prod-
uct α · · · γ, then SL = T k, where

k := aL
α

+ · · ·+ cL
γ

note
=== L · [ a

α
+ · · ·+ c

γ
] .

Since T is weak-mixing it cannot be periodic, so k
must be zero. Thus a

α
+ · · ·+ c

γ
is zero. �

Root chains. Related to (Q3) is this: Does the
generic T extend to a Q∞-action? Here, Q∞ is
the group of rationals (Q,+), but equipped with
the discrete topology.

In light of the foregoing theorem, what is the
obstruction to fabricating a Q∞-action? If, for

♥8Although this follows from the Weak-Closure theorem,
[?], there is a generic subset of Rank-1 –the maps with
“flat stacks”– where abelianness of the commutant follows
by an elementary argument.
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each prime p, we can produce an infinite length
“p-chain”

T =: S0 ↼
p
S1 ↼

p
S2 ↼

p
. . .

where each Sk+1 is a pth root of Sk, then a Q∞-
action can be build as above. Thus one is led to
ask:

Q4: Does there exist a weak-mixing T which
has square-root chains of each finite length, but
no infinite square-root chain? �

I raised this question at the Ergodic Theory
seminar while on sabbatical at U. of Toronto,
in 1996-1997. The menagerie of examples and
techniques from the 1960&70’s suggested a “yes”
to (Q4). One natural approach, harking back to
Ornstein’s construction, is the “counterexample
machine” built by Dan Rudolph, which uses the
rank-1 mixing map of Ornstein.

Vaguely, Rudolph’s machine takes a permuta-
tion of Z, and produces a weak-mixing transfor-
mation with analogous properties. A standard ap-
proach to (Q4), then, would be to search the group
of Z-permutations for:

A permutation π of Z which has arbi-
trarily long square-root chains, but no
infinite chains.

Alas, the Reader can verify that no such π exists.

Techniques of del Junco and others.
Nonetheless, ideas of the counterexample machine
can be used. Andrés del Junco developed machin-
ery, for certain abelian groups G, which produces
a G-action ϕ:I×G→I for which the commutant
of certain transformations in the action is limited
to the G-action itself.

This suggested first constructing a denumerable
abelian group (M,�, e) and element η ∈ M such
that η has square-root chains of each finite length,
but has no infinite chain. Here is one such group,
the Madore group:

Let M be the free abelian group on symbols
(generators) η, γ1, γ2, . . . , where the generating re-
lations are

γj � γj � · · ·� γj︸ ︷︷ ︸
2j copies

= η , for j = 1, 2, . . . .32:

We now describe M in an alternative way.
Let Gj be the additive cyclic group [0 .. 2j); that

is, Z/2jZ. As a set, define M to be the direct sum

M := Z⊕G1 ⊕G2 ⊕ . . . .33:

So M comprises all tuples 〈a | g1, g2, . . . 〉 where
a ∈ Z and gj ∈ Gj, and only finitely many of
the gj are non-zero. Given α := 〈a | g1, g2, . . . 〉
and β := 〈b | h1, h2, . . . 〉, let N be smallest natural
number with gn = hn = 0, for all n > N . Define
addition in M by

α� β :=
〈
a+ b+

∑N
j=1 cj

∣∣∣∣ r1, r2, . . .〉 ,
where cj is the jth “carry” in group [0 .. 2j), and
rj is the remainder. That is

gj + hj = rj + 2jcj ,
where rj ∈ [0 .. 2j) and cj
is either 0 or 1.

Thus � is component-wise addition, with a carry
from the jth component into the n0zeroth compo-
nent. Evidently M is abelian with e := 〈0 | 0, . . . 〉
its neutral element.

To write down an additive inverse, �α, let J be
the number of indices j with gj 6= 0. Then

�α =
〈
−[a+ J ]

∣∣∣∣ f1, f2, f3, . . .〉 ,
where fj is the Gj-inverse of gj. So fj is 2j − gj,
if gj 6= 0, and is zero otherwise.

Identify
〈
k
∣∣∣ 0, . . .

〉
with the integer k, thus

exhibiting a copy of (Z,+) inside of (M,�). Our
M is generated by the collection {η, γ1, γ2, . . . },
where

η := 〈1 | 0, 0, 0, 0, 0, 0, . . . 〉 The 1 is in the zero-
th position.

γj := 〈0 | 0, . . . , 0, 1, 0 . . . 〉 This 1 is in jth posi-
tion.
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Since γj is a 2j-th root of η, one sees that (??) with
operation � is the same group as defined by (??).

Fixing j, there is a square-root chain

η ↼ 2j−1γj ↼ 2j−2γj ↼ . . . ↼ 4γj ↼ 2γj ↼ γj

of length j. Yet one can check that no element in
M r {e} has an infinite chain.

Answering “yes” to (Q4). Blair Madore, a
student of del Junco, proved the following theorem
as part of his doctoral travails.

34: Madore’s Theorem (Theorem 1.1 in [?]). Let G be
a countable abelian group with subgroup Zd, for
some d > 1, where each element of the quotient
group G/Zd has finite order. Then there exists a
rank-one action of G so that the transformation
T corresponding to (1, 0, 0, . . . , 0) in Zd is mixing,
simple, and only commutes with the other trans-
formations in G. ♦

In particular, there is such an action ϕ of the
Madore group. With η meaning 〈1 | 0, 0 . . . 〉,
then, T := ϕη is a mixing transformation having
no infinite square-root chain.

Conditions implying a Q∞ extension. Var-
ious general results would imply that the generic
Z-action extends to an action of the discrete ra-
tionals.

Q5: Generically, does T have at most one square-
root? �

If a map T in (??) had, for each j, at most one
jth root, then the proof of (??) would extend T to
a unique Q∞-action.

Note that (Q5) is equivalent to this query:
For the generic rank-1 map T , is the identity map
the only involution commuting with T?

Closing thoughts. The RAO theorem was
proved under the aegis of the coarse topology
on Ω. Because the set of maps with RAO is
an analytic set, the Equivalence Theorem of [?,
thm. 7] applies to say that Rao is also residual
in another standard setting, the Polish space of
shift-invariant Borel probability measures on the
Hilbert cube [0, 1]Z.

It may well turn out that there are more general
equivalence theorems, and that settings whose
topology is more natural for the transformations
arising in physics nonetheless have the same ab-
stract genericity properties.

§F Questions File

(This are additional questions and are not part of the

“Roots” article.)

Question Q1. Is there a trn T which has a square-
root chain,

T ← T1 ← · · · ← TN ,

for each N , but has no infinite square-root
chain? �

Question Q2. Does there exist a permutation π
of N which has square-root chains of all finite
lengths, but no infinite chain? (Almost certainly,

“No” –simple details need to be checked.) �

Example 2. Here is a denumerable group M ,
and element η, so that η has all finite square-root
chains, but no infinite chain. The only infinite
chain is e ← e ← . . . , where e is the identity
element,

Let M be the free abelian group on symbols
(generators) η, γ1, γ2, . . . , where the generatoring
relations are

[γj]
2j = η , for j = 1, 2, . . . .35:
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We now describe M in an alternative way.
Let Gj be the additive cyclic group [0 .. 2j); that

is, Z/2jZ. As a set, let M be the direct sum

M := Z⊕G1 ⊕G2 ⊕ . . . .36:

So M comprises all tuples
〈
a
∣∣∣ g1, g2, . . . 〉 where

a ∈ Z and gj ∈ Gj, and only finitely many of

the gj are non-zero. Given α :=
〈
a
∣∣∣ g1, g2, . . . 〉

and β :=
〈
b
∣∣∣ h1, h2, . . . 〉, let N be smallest nat-

ural so that gn = hn = 0, for all n > N . Define
addition in M by

α� β :=
〈
a+ b+

∑N
j=1 cj

∣∣∣∣ r1, r2, . . .〉 ,
where cj is the jth “carry” in group [0 .. 2j). That
is

gj + hj = rj + cj · 2j , with rj ∈ [0 .. 2j).

Thus � is component-wise addition, with a carry
from the jth component into the n0zeroth compo-
nent. Evidently M is abelian with e := 〈0 | 0, . . . 〉
its neutral element.

To write down an additive inverse, �α, let J be
the number of indices j with gj 6= 0. Then

�α =
〈
−[a+ J ]

∣∣∣∣ f1, f2, f3, . . .〉 ,
where fj is the Gj-inverse of gj. So fj is 2j − gj,
if gj 6= 0, and is zero otherwise.

Identify
〈
n
∣∣∣ 0, . . .

〉
with the integer n; this is a

copy of (Z,+) in (M,�). Our M is generated by
the collection {η, γ1, γ2, . . . }, where

η := 〈1 | 0, 0, 0, 0, . . . 〉 This 1 is in the zero-
th position.

γj := 〈0 | 0, . . . , 0, 1, 0 . . . 〉 The 1 is in jth posi-
tion.

Since γj is a 2j-th root of η, one sees that (??)
with � is the same group as defined by (??).

Fixing j, there is a square-root chain

η ↼ 2j−1γj ↼ 2j−2γj ↼ . . . ↼ 2γj ↼ γj

of length j. Yet one can check than no element in
M r {e} has an infinite chain.

For an arbitrary element γ ∈ M , for each j,
note that γ2

j
has a jth component of zero. Thus

If an element δ has a non-zero jth com-
ponent, then this element has no 2j-th
root. Hence it has no square-root j-
chain.

Consequently, no (non-identity) element of M has
an infinite chain. After all, from a non-zero in-
teger n, the longest an integer -chain can be is k,
where 2k||n. And once a square-root chain enters
the non-integers, say at δ, its length has a fixed
bound (which depends on δ). �

Question Q3. How does the squaring map on Ω
interact with Rank-1?

A generic T is rank-1 and, if the later argument
is correct, has roots of all orders. Since C(T ) is
necessarily abelian, all of T ’s roots commute. If
we could show that T had infinite chains, then T
would live inside a Q-action. �

Observation 4. Let QK be the (additive) sub-
group of the rationals generated by 1/pK , as p
ranges over the primes; call pK a “K-prime”. QK

comprises fractions n/[pk11 · · ·pkJJ ], where each kj is
in [0 .. K].

For each K,

The generic T lives inside a QK-action.

To see this, fix a rank-1 T which has roots of all or-
ders. For each K-prime p, let Sp be a pth root of T .
Let GK be the abelian (T is rank-1) group gener-
ated by all the Sp. Define a mapping ϕ:GK→QK

by

Sap S
b
q · · ·Scr 7→

a

p
+
b

q
+ · · ·+ c

r
=

γ

pq · · · r
where γ := aNp + bNq + · · ·+ cNr .

In the last expression, Np is the product of all
the K-primes except p. To show this well defined,
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suppose ϕ sends Sap · · ·Scr to zero, i.e, γ = 0. Now
p divides 0 and bNq + · · ·+ cNr, yet p is co-prime
to Np. So we can write a = Ap, for some integer A.
Similarly we write b = Bq, . . . and c = Cr. In
consequence,

Sap · · ·Scr = TA · · ·TC .

But this last transformation equals Id, since

A+ · · ·+ C = a
p

+ · · ·+ c
r

which is zero. Lastly, since ϕ is well-defined,
it trivially is a homomorphism from (GK , ◦)
onto (QK ,+). �

Question Q4. Does the generic T have a unique
square-root? Since generically C(T ) is abelian,
if Si are distinct square-roots of T , then S0S1

−1 is
a non-trivial involution. So the question above is
equivalent to:

Does the generic rank-1 have no involu-
tions in its commutant?

If so, then since T has dyadic roots of all orders, in
has an infinite square-root chain. If C(T ) had no
e-periodic members, then T has infinite eth-root
chain, for e = 2, 3, . . . . Then the above argument
would show that T lives inside a Q-action; indeed,
a unique Q-action. �

Question Q5. Does the generic T live in a flow?
Is the generic flow Φ determined by its time-1

map? �

Question Q6. Suppose that T and R are arbitrary
maps. For the squaring map ℘: If ℘

(
Ballr(R)

)
misses Ball2ε(T ), does a sufficiently small δ force

℘
(
Ballr+δ(R)

)
to miss Ballε(T )? �

Question Q7. For a weak-mixing T , under what
circumstances is e

√
T compact? �
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