

Ring basics

Jonathan L.F. King
 University of Florida, Gainesville FL 32611-2082, USA
 squash@ufl.edu
 Webpage <http://squash.1gainesville.com/>
 28 February, 2024 (at 19:02)

Semigroups & Monoids. A *semigroup* is a pair (S, \bullet) , where \bullet is an associative *binary operation* [*binop*] on set S . A special case is a *monoid*. It is a triple (S, \bullet, \mathbf{e}) , where \bullet is an associative binop on S , and $\mathbf{e} \in S$ is a two-sided identity elt.

Axiomatically:

G1: Binop \bullet is *associative*, i.e $\forall \alpha, \beta, \gamma \in S$, necessarily $[\alpha \bullet \beta] \bullet \gamma = \alpha \bullet [\beta \bullet \gamma]$.

G2: Elt \mathbf{e} is a *two-sided identity element*, i.e $\forall \alpha \in S: \alpha \bullet \mathbf{e} = \alpha$ and $\mathbf{e} \bullet \alpha = \alpha$.

Moreover, we call S a *Group* if t.fol also holds.

G3: Each elt admits a *two-sided inverse element*:
 $\forall \alpha, \exists \beta$ such that $\alpha \bullet \beta = \mathbf{e}$ and $\beta \bullet \alpha = \mathbf{e}$.

When the binop is ‘+’, *addition*, then write the inverse of α as $-\alpha$ and call it “*negative* α ”. We then use 0 for the id-elt.

When the binop is ‘multiplication’, write the inverse of α as α^{-1} and call it the “*reciprocal* of α ”. We use 1 for the id-elt. Usually, one omits the binop-symbol and writes $\alpha\beta$ for $\alpha \bullet \beta$.

For an *abstract* binop ‘ \bullet ’, we often write α^{-1} for the inverse of α [“ α inverse”], and omit the binop-symbol. If \bullet is *commutative* [$\forall \alpha, \beta$, necessarily $\alpha \bullet \beta = \beta \bullet \alpha$] then we call S a *commutative group*.

Rings/Fields. A *ring* is a five-tuple $(\Gamma, +, 0, \cdot, 1)$ with these axioms.

R1: Elements 0 and 1 are distinct; $0 \neq 1$.

R2: Triple $(\Gamma, +, 0)$ is a commutative group.

R3: Triple $(\Gamma, \cdot, 1)$ is monoid.

R4: Mult. *distributes-over* addition from the *left*,
 $\alpha[x + y] = [\alpha x] + [\alpha y]$, and from the *right*,
 $[x + y]\alpha = [x\alpha] + [y\alpha]$; this, for all $\alpha, x, y \in \Gamma$.

Our Γ is a *commutative ring* (abbrev.: *commRing*) if the multiplication is commutative.

When Γ is commutative: Say that $\alpha \bullet \beta$ [α *divides* β] if *there exists* $\mu \in \Gamma$ s.t $\alpha\mu = \beta$. This is the same relation as $\beta \bullet \alpha$ [β is a multiple of α].

Zero-divisors. Fix $\alpha \in \Gamma$. Elt $\beta \in \Gamma$ is a “(*two-sided*) *annihilator* of α ” if $\alpha\beta = 0 = \beta\alpha$. An α is a (*two-sided*) *zero-divisor* if it admits a *non-zero* annihilator. So 0 is a ZD, since $0 \cdot 1 = 0 = 1 \cdot 0$, and $1 \neq 0$. We write the set of Γ -zero-divisors as

$$\text{ZD}_\Gamma \quad \text{or} \quad \text{ZD}(\Gamma).$$

[E.g: In the \mathbb{Z}_{15} ring, note $9 \not\equiv 0$ and $10 \not\equiv 0$, yet $9 \cdot 10 \text{ is } \equiv 0$. So each of 9 and 10 is a “*non-trivial zero-divisor* in \mathbb{Z}_{15} ”.]

An $\alpha \in \Gamma$ is a Γ -*unit* if $\exists \beta \in \Gamma$ st. $\alpha\beta = 1 = \beta\alpha$. Use

$$\mathbf{U}_\Gamma \quad \text{or} \quad \mathbf{U}(\Gamma)$$

for the units group. In the special case when Γ is \mathbb{Z}_N , I will write Φ_N for its units group, to emphasize the relation with the Euler-phi fnc, since $\varphi(N) := |\Phi_N|$. [Some texts use $\mathbf{U}(N)$ for the \mathbb{Z}_N units group.]

Integral domains, Fields. A *commutative ring* is a ring in which the multiplication is commutative. A commRing with no (non-zero) zero-divisors [that is, $\text{ZD}_\Gamma = \{0\}$] is called an *integral domain* (*intDomain*), or sometimes just a *domain*.

An intDomain F in which every non-zero element is a unit [i.e $\mathbf{U}(F) = F \setminus \{0\}$] is a *field*. That is to say, F is a commRing where triple $(F \setminus \{0\}, \cdot, 1)$ is a group.

Examples. The fields we know are: \mathbb{Q} , \mathbb{R} , \mathbb{C} and, for p prime, \mathbb{Z}_p .

Every ring has the “trivial zero-divisor” —zero itself. The ring of integers doesn’t have others. In contrast, the non-trivial zero-divisors of \mathbb{Z}_{12} comprise $\{\pm 2, \pm 3, \pm 4, 6\}$.

In \mathbb{Z} the units are ± 1 . But in \mathbb{Z}_{12} , the ring of integers mod-12, the set of units, $\Phi(12)$, is $\{\pm 1, \pm 5\}$. In the ring \mathbb{Q} of rationals, *each* non-zero element is a unit. In the ring $\mathbb{G} := \mathbb{Z} + i\mathbb{Z}$ of *Gaussian integers*, the units group is $\{\pm 1, \pm i\}$. [Aside: Units(\mathbb{G}) is cyclic, generated by i . And Units(\mathbb{Z}_{12}) is not cyclic. For which N is $\Phi(N)$ cyclic?] □

Irreducibles, Primes. Consider $(\Gamma, +, 0, \cdot, 1)$, a commutative ring¹. An elt $\alpha \in \Gamma$ is a **zero-divisor** [abbrev ZD] if there exists a non-zero $\beta \in \Gamma$ st. $\alpha\beta = 0$.

In contrast, an element $u \in \Gamma$ is a **unit** if $\exists w \in \Gamma$ st. $u \cdot w = 1$. This w , written as u^{-1} , is called the **reciprocal** [or *multiplicative-inverse*] of u . [When an element *has* a mult-inverse, this mult-inverse is unique.]

Exer 1a: If α divides a unit, $\alpha \mid u$, then α is a unit.

Exer 1b: If $\gamma \mid z$ with $z \in \text{ZD}$, then γ is a zero-divisor.

Exer 2: In an arbitrary ring Γ , the set $\text{ZD}(\Gamma)$ is *disjoint* from $\text{Units}(\Gamma)$.

An element $p \in \Gamma$ is:

i: **Γ -irreducible** if p is a non-unit, non-ZD, such that for each Γ -factorization $p = x \cdot y$, either x or y is a Γ -unit. [Restating, using the definition below: Either $x \approx 1, y \approx p$, or $x \approx p, y \approx 1$.]

ii: **Γ -prime** if p is a non-unit, non-ZD, such that for each pair $c, d \in \Gamma$: If $p \mid [c \cdot d]$ then either $p \mid c$ or $p \mid d$.

Associates. In a *commutative* ring, elts α and β are **associates**, written $\alpha \approx \beta$, if *there exists* a unit u st. $\beta = u\alpha$. [For emphasis, we might say strong associates.] They are **weak-associates**, written $\alpha \sim \beta$, if $\alpha \mid \beta$ and $\alpha \mid \beta$ [i.e. $\alpha \in \beta\Gamma$ and $\beta \in \alpha\Gamma$].

Ex 3: Prove $\text{Assoc} \Rightarrow \text{weak-Assoc}$.

Ex 4: If $\alpha \sim \beta$ and $\alpha \notin \text{ZD}$, then α, β are (strong) associates.

Ex 5: In \mathbb{Z}_{10} , zero-divisors 2, 4 are weak-associates. [This, since $2 \cdot 2 \equiv 4$ and $4 \cdot 3 = 12 \equiv 2$.] Are 2, 4 (strong) associates?

Ex 6: With $d \mid \alpha$, prove: If α is a non-ZD, then d is a non-ZD.

And: If α is a unit, then d is a unit.

1: **Lemma.** In a commRing¹ Γ , each prime α is irreducible. ◇

Proof. Consider factorization $\alpha = xy$. Since $\alpha \mid xy$, WLOG $\alpha \mid x$, i.e. $\exists c$ with $\alpha c = x$. Hence

$$* : \alpha = xy = \alpha cy.$$

By defn, $\alpha \notin \text{ZD}$. We may thus cancel in (*), yielding $1 = cy$. So y is a unit. ◆

¹More generally, a commutative monoid.

There are rings² with irreducible elements p which are nonetheless not prime. However...

2: **Lemma.** Suppose commRing Γ satisfies the Bézout condition, that each GCD is a linear-combination. Then each irreducible α is prime. ◇

Pf. Suppose $\alpha \nmid c \cdot d$. WLOG $\alpha \nmid c$. Let $g := \text{GCD}(\alpha, c)$. Were $g \approx \alpha$, then $\alpha \mid g \mid c$, a contradiction. Thus, since α is irreducible, our $g \approx 1$. Bézout produces $S, T \in \Gamma$ with

$$1 = S\alpha + Tc. \text{ Hence}$$

$$*: d = S\alpha d + Tcd = Sd\alpha + Tcd.$$

By hyp, $\alpha \mid cd$, hence α divides RhS(*). So $\alpha \mid d$. ◆

3: **Lemma.** In commRing Γ , if prime p divides product $\alpha_1 \cdots \alpha_K$ then $p \mid \alpha_j$ for some j . [Exer. 7] ◇

4: **Prime-uniqueness thm.** In commRing Γ , suppose

$$p_1 \cdot p_2 \cdot p_3 \cdots p_K = q_1 \cdot q_2 \cdot q_3 \cdots q_L$$

are equal products-of-primes. Then $L = K$ and, after permuting the p primes, each $p_k \approx q_k$. ◇

Pf. [From Ex.4, previously, for non-ZD, relations \sim and \approx are the same.] For notational simplicity, we do this in \mathbb{Z}_+ , in which case $p_k \approx q_k$ will be replaced by $p_k = q_k$.

FTSOC, consider a CEX which minimizes sum $K+L$; necessarily positive. WLOG $L \geq 1$. Thus $K \geq 1$. [Otherwise, q_L divides a unit, forcing q_L to be a unit; see Ex.1a.] By the preceding lemma, q_L divides *some* p_k ; WLOG $q_L \mid p_K$. Thus $q_L = p_K$ [since p_K is prime and q_L is not a unit]. Cancelling now gives $p_1 \cdot p_2 \cdots p_{K-1} = q_1 \cdot q_2 \cdots q_{L-1}$, giving a CEX with a smaller $[K-1] + [L-1]$ sum. ◆

²Consider the ring, Γ , of polys with coefficients in \mathbb{Z}_{12} . There, $x^2 - 1$ factors as $[x - 5][x + 5]$ and as $[x - 1][x + 1]$. Thus none of the four linear terms is prime. Yet each is Γ -irreducible. (Why?) This ring Γ has zero-divisors (yuck!), but there are natural subrings of \mathbb{C} where $\text{Irred} \neq \text{Prime}$.

Example where $\sim \neq \approx$. Here a modification of an example due to Irving (“Kap”) Kaplansky.

Let Ω be the ring of real-valued *continuous* fncs on $[-2, 2]$. Define $\mathcal{E}, \mathcal{D} \in \Omega$ by: For $t \geq 0$:

$$\mathcal{E}(t) = \mathcal{D}(t) := \begin{cases} t-1 & \text{if } t \in [1, 2] \\ 0 & \text{if } t \in [0, 1] \end{cases}.$$

And for $t \leq 0$ define

$$\mathcal{E}(t) := \mathcal{E}(-t) \quad \text{and} \quad \mathcal{D}(t) := -\mathcal{D}(-t).$$

[So \mathcal{E} is an Even fnc; \mathcal{D} is odd.] Note $\mathcal{E} = f\mathcal{D}$ and $\mathcal{D} = f\mathcal{E}$, where

$$f(t) := \begin{cases} 1 & \text{if } t \in [1, 2] \\ t & \text{if } t \in [-1, 1] \\ -1 & \text{if } t \in [-2, -1] \end{cases}.$$

Hence $\mathcal{E} \sim \mathcal{D}$. [This f is not a unit, since $f(0) = 0$ has no reciprocal. However, f is a *non-ZD*: For if $fg = 0$, then g must be zero on $[-2, 2] \setminus \{0\}$. Cty of g then forces $g \equiv 0$.]

Could there be a unit $u \in \Omega$ with $u\mathcal{D} = \mathcal{E}$? Well

$$u(2) = \frac{\mathcal{E}(2)}{\mathcal{D}(2)} \stackrel{\text{note}}{=} 1, \quad \text{and} \quad u(-2) = \frac{\mathcal{E}(-2)}{\mathcal{D}(-2)} \stackrel{\text{note}}{=} -1.$$

Cty of $u()$ forces u to be zero somewhere on interval $(-2, 2)$, hence u is *not* a unit. \square

Addendum. By Ex.4, both \mathcal{E} and \mathcal{D} must be zero-divisors. [Exer.8: Exhibit a function $g \in \Omega$, *not* the zero-fnc, such that $\mathcal{E} \cdot g \equiv 0$.] \square