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Semigroups & Monoids. A semigroup is a pair
(((S, •))), where • is an associative binary operation
[binop] on set S. A special case is a monoid. It
is a triple (((S, •, e))), where • is an associative binop
on S, and e ∈ S is a two-sided identity elt.

Axiomatically:

G1: Binop • is associative, i.e ∀α,β,γ ∈ S, necessar-
ily [α • β] • γ = α • [β • γ].

G2: Elt e is a two-sided identity element, i.e
∀α ∈ S: α • e = α and e • α = α.

Moreover, we call S a Group if t.fol also holds.

G3: Each elt admits a two-sided inverse element :
∀α, ∃β such that α • β = e and β • α = e.

When the binop is ‘+’, addition, then write the
inverse of α as α and call it “negative α”. We then
use 0 for the id-elt.

When the binop is ‘multiplication’, write the inverse
of α as α 1 and call it the “reciprocal of α” We use 1
for the id-elt. Usually, one omits the binop-symbol
and writes αβ for α•β.

For an abstract binop ‘•’, we often write α 1 for the
inverse of α [“α inverse”], and omit the binop-symbol.
If • is commutative [∀α,β, necessarily α • β = β • α] then
we call S a commutative group.

Rings/Fields. A ring is a five-tuple (((Γ,+, 0, ·, 1)))
with these axioms.

R1: Elements 0 and 1 are distinct; 0 6= 1.

R2: Triple
(((

Γ,+, 0
)))
is a commutative group.

R3: Triple
(((

Γ, · , 1
)))
is monoid.

R4: Mult. distributes-over addition from the left,
α[x+ y] = [αx] + [αy], and from the right,
[x+ y]α = [xα] + [yα]; this, for all α,x,y ∈ Γ.

Our Γ is a commutative ring (abbrev.: commRing)
if the multiplication is commutative.

When Γ is commutative: Say that α •| β [α divides
β] if there exists µ ∈ Γ s.t αµ = β. This is the same
relation as β |• α [β is a multiple of α].

Zero-divisors. Fix α ∈ Γ. Elt β ∈ Γ is a “(two-
sided) annihilator of α” if αβ = 0 = βα. An α
is a (two-sided) zero-divisor if it admits a non-zero
annihilator. So 0 is a ZD, since 0 · 1 = 0 = 1· 0, and
1 6= 0. We write the set of Γ–zero-divisors as

ZDΓ or ZD(Γ) .

[E.g: In the Z15 ring, note 9 6≡ 0 and 10 6≡ 0, yet 9·10 is ≡ 0.
So each of 9 and 10 is a “non-trivial zero-divisor in Z15”.]

An α ∈ Γ is a Γ-unit if ∃β ∈ Γ st. αβ = 1 = βα.
Use

UΓ or U(Γ)

for the units group. In the special case when Γ is ZN ,
I will write ΦN for its units group, to emphasize the
relation with the Euler-phi fnc, since ϕ(N) :=

∣∣ΦN

∣∣.
[Some texts use U(N) for the ZN units group.]

Integral domains, Fields. A commutative ring
is a ring in which the multiplication is commutative.
A commRing with no (non-zero) zero-divisors [that is,
ZDΓ = {0}] is called an integral domain (intDomain),
or sometimes just a domain.

An intDomain F in which every non-zero element
is a unit [i.e U(F ) = Fr{0}] is a field. That is to say, F
is a commRing where triple

(((
Fr{0}, · , 1

)))
is a group.

Examples. The fields we know are: Q, R, C and, for
p prime, Zp.

Every ring has the “trivial zero-divisor” —zero it-
self. The ring of integers doesn’t have others. In
contrast, the non-trivial zero-divisors of Z12 comprise
{±2,±3,±4, 6}.

In Z the units are ±1. But in Z12, the ring of in-
tegers mod-12, the set of units, Φ(12), is {±1,±5}.
In the ring Q of rationals, each non-zero element is a
unit. In the ring G := Z + iZ of Gaussian integers,
the units group is {±1,±i}. [Aside: Units(G) is cyclic,
generated by i. And Units(Z12) is not cyclic. For which N is
Φ(N) cyclic?] �
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Irreducibles, Primes. Consider (((Γ,+, 0, ·, 1))), a
commutative ring♥1. An elt α ∈ Γ is a zero-divisor
[abbrev ZD] if there exists a non-zero β ∈ Γ st. αβ = 0.

In contrast, an element u ∈ Γ is a unit if ∃w ∈ Γ
st. u·w = 1. This w, written as u 1, is called the
reciprocal [or multiplicative-inverse] of u. [When an
element has a mult-inverse, this mult-inverse is unique.]

Exer 1a: If α divides a unit, α •| u, then α is a unit.

Exer 1b: If γ |• z with z ∈ ZD, then γ is a zero-divisor.

Exer 2: In an arbitrary ring Γ, the set ZD(Γ) is disjoint from
Units(Γ).

An element p ∈ Γ is:

i : Γ-irreducible if p is a non-unit, non-ZD, such
that for each Γ-factorization p = x·y, either x or
y is a Γ-unit. [Restating, using the definition below:
Either x≈1, y≈p, or x≈p, y≈1.]

ii : Γ-prime if p is a non-unit, non-ZD, such that for
each pair c,d ∈ Γ: If p •| [c · d] then either p •| c
or p •| d.

Associates. In a commutative ring, elts α and β
are associates, written α ≈ β , if there exists a
unit u st. β = uα. [For emphasis, we might say strong
associates.] They are weak-associates, written
α ∼ β, if α •| β and α |• β [i.e, α ∈ βΓ and β ∈ αΓ].

Ex 3: Prove Assoc ⇒ weak-Assoc.

Ex 4: If α ∼ β and α /∈ ZD, then α, β are (strong) associates.

Ex 5: In Z10, zero-divisors 2, 4 are weak-associates. [This,

since 2·2 ≡ 4 and 4·3 = 12 ≡ 2.] Are 2, 4 (strong) associates?

Ex 6: With d •| α, prove: If α is a non-ZD, then d is a non-ZD.
And: If α is a unit, then d is a unit.

1: Lemma. In a commRing♥1 Γ, each prime α is
irreducible. ♦

Proof. Consider factorization α = xy. Since α •| xy,
WLOG α •| x, i.e ∃c with αc = x. Hence

α = xy = αcy .∗:

By defn, α /∈ ZD. We may thus cancel in (∗), yielding
1 = cy. So y is a unit. �

♥1More generally, a commutative monoid.

There are rings♥2 with irreducible elements p which
are nonetheless not prime. However. . .

2: Lemma. Suppose commRing Γ satisfies the Bézout
condition, that each GCD is a linear-combination.
Then each irreducible α is prime. ♦

Pf. Suppose α •| c·d. WLOG α �r| c. Let
g := GCD(α, c). Were g ≈ α, then α •| g •| c, a con-
tradiction. Thus, since α is irreducible, our g ≈ 1.

Bézout produces S,T ∈ Γ with

1 = Sα+ Tc . Hence

d = Sαd+ Tcd = Sdα+ Tcd .∗:

By hyp, α •| cd, hence α divides RhS(∗). So α •| d.�

3: Lemma. In commRing Γ, if prime p divides product
α1 · · ·αK then p •| αj for some j. [Exer. 7] ♦

4: Prime-uniqueness thm. In commRing Γ, suppose

p1·p2·p3 · · · pK = q1·q2·q3 · · · qL

are equal products-of-primes. Then L = K and, after
permuting the p primes, each pk ≈ qk. ♦

Pf. [From Ex.4, previously, for non-ZD, relations ∼ and ≈ are
the same.] For notational simplicity, we do this in Z+,
in which case pk ≈ qk will be replaced by pk = qk.

FTSOC, consider a CEX which minimizes sum
K+L; necessarily positive. WLOG L≥1. Thus
K≥1. [Otherwise, qL divides a unit, forcing qL to be a
unit; see Ex.1a.] By the preceding lemma, qL divides
some pk; WLOG qL •| pK . Thus qL = pK [since pK

is prime and qL is not a unit]. Cancelling now gives
p1·p2 · · · pK−1 = q1·q2 · · · qL−1, giving a CEX with a
smaller [K−1] + [L−1] sum. �

♥2Consider the ring, Γ, of polys with coefficients in Z12.
There, x2 − 1 factors as [x− 5][x+ 5] and as [x− 1][x+ 1].
Thus none of the four linear terms is prime. Yet each is Γ-
irreducible. (Why?) This ring Γ has zero-divisors (yuck!),
but there are natural subrings of C where Irred 6⇒Prime.
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Example where ∼ 6= ≈. Here a modification of an
example due to Irving (“Kap”) Kaplansky.

Let Ω be the ring of real-valued continuous fncs
on [ 2, 2]. Define E,D ∈ Ω by: For t ≥ 0 :

E(t) = D(t) :=

{
t− 1 if t ∈ [1, 2]

0 if t ∈ [0, 1]

}
.

And for t ≤ 0 define

E(t) := E( t) and D(t) := −D( t) .

[So E is an Even fnc; D is odD.] Note E = fD and D = fE,
where

f(t) :=


1 if t ∈ [ 1, 2]

t if t ∈ [ 1, 1]

1 if t ∈ [ 2, 1]

 .

Hence E ∼ D. [This f is not a unit, since f(0) = 0 has no
reciprocal. However, f is a non-ZD: For if fg = 0, then g must
be zero on [ 2, 2]r {0}. Cty of g then forces g ≡ 0.]

Could there be a unit u ∈ Ω with uD = E? Well

u(2) = E(2)
D(2)

note
=== 1 , and u( 2) = E( 2)

D( 2)
note
=== 1 .

Cty of u() forces u to be zero somewhere on inter-
val ( 2, 2), hence u is not a unit. �

Addendum. By Ex.4, both E and D must be zero-
divisors. [Exer.8: Exhibit a function g∈Ω, not the zero-fnc,
such that E·g ≡ 0.] �
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