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Semigroups & Monoids. A semigroup is a pair

(S,e), where e is an associative binaryoperation

[binop| on set S. A special case is a monoid. It

is a triple (S,e,e), where e is an associative binop

on S, and e € S is a two-sided identity elt.
Axiomatically:

G1: Binop e is assoctative, i.e Va,3,y € S, necessar-
ily [ceffley = ae[Fen].

G2: Elt e is a two-sided identity element, i.e
YVa € S:

Moreover, we call S a Group if t.fol also holds.

aee=qu and eex = «.

G3: Each elt admits a two-stded tnverse element:
Ya, 36 such that ve 5 =e and Sea =e.

When the binop is ‘4’, addition, then write the
inverse of a as - and call it “negative o”. We then
use 0 for the id-elt.

When the binop is ‘multiplication’, write the inverse
of v as a™! and call it the “reciprocal of o” We use 1
for the id-elt. Usually, one omits the binop-symbol
and writes af for cvef3.

For an abstract binop ‘e’, we often write o' for the
inverse of a [“av inverse”|, and omit the binop-symbol.
If e is commutative [Vo,3, necessarily a o 3 = 3 e o then

we call S a commutative group.

Rings/Fields. A ring is a five-tuple (T, +,0,-,1)
with these axioms.

R1: Elements 0 and 1 are distinct; 0 # 1.

R2: Triple (F, =+, O) is a commutative group.

R3: Triple (r, - 1) is monoid.

R4: Mult. distributes-over addition from the left,
alr +y| = [ax] + [ay], and from the right,
[z + yla = [za] + [yal; this, for all a,z,y € T.

Our I' is a commutative ring (abbrev.: commRing)
if the multiplication is commutative.

When T is commutative: Say that « ¢ ( |« divides
B| if there exists p € T’ s.t ap = B. This is the same
relation as 3 k « [ﬂ is a multiple of a].
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Zero-divisors. Fix a € I'. Elt g € T is a “(two-
sided) annihilator of o” if af = 0 = fa. An «
is a (two-sided) zero-divisor if it admits a non-zero
annihilator. So 0 is a ZD, since 0-1 =0 = 1.0, and
1 # 0. We write the set of I'-zero-divisors as

ZDr or ZD(T).

[E.g: In the Zi5 ring, note 9 # 0 and 10 # 0, yet 9-10 is = 0.
So each of 9 and 10 is a “non-trivial zero-divisor in Z15”.]

AnaeTlisal~unit if 36 €T st. af =1 = fa.
Use Ur or U(D)

for the units group. In the special case when I" is Zy,
I will write @ for its units group, to emphasize the
relation with the Euler-phi fnc, since @(N) = |®y]|.
[Some texts use U(N) for the Zy units group.|

Integral domains, Fields. A commutative ring
is a ring in which the multiplication is commutative.
A commRing with no (non-zero) zero-divisors [that is,
7Dr = {0}] is called an integral domain (intDomain),
or sometimes just a domain.

An intDomain F' in which every non-zero element
is a unit [i.e U(F) = F~.{0}] is a field. That is to say, F
is a commRing where triple (F~.{0}, -, 1) is a group.

Ezamples. The fields we know are: Q, R, C and, for
p prime, Zp.

Every ring has the “trivial zero-divisor” —zero it-
self. The ring of integers doesn’t have others. In
contrast, the non-trivial zero-divisors of Zq9 comprise
{£2,+3,+4,6}.

In Z the units are +1. But in Zjo, the ring of in-
tegers mod-12, the set of units, ®(12), is {£1,£5}.
In the ring Q of rationals, each non-zero element is a
unit. In the ring G := Z + iZ of Gaussian integers,
the units group is {£1,£i}. [Aside: Units(G) is cyclic,
generated by i. And Units(Zi2) is not cyclic. For which N is
®(N) cyclic?] (]
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Irreducibles, Primes. Consider (I',+,0,-,1), a
commutative ring”’. An elt o € I is a zero-divisor
[abbrev ZD| if there exists a non-zero § € I' st. aff = 0.

In contrast, an element v € I' is a wnit if Jw € I

st. ww = 1.

This w, written as v, is called the
reciprocal |or multiplicative-inverse| of u. [When an
element has a mult-inverse, this mult-inverse is unique.]

Exer la: If a divides a unit, « ¢ u, then « is a unit.

Exer 1b: If v o z with z € ZD, then ~ is a zero-divisor.

Exer 2: In an arbitrary ring I', the set ZD(T') is disjoint from
Units(T).

An element p € I is:

1: I'-¢rreducible if p is a non-unit, non-ZD, such
that for each I'-factorization p = -y, either x or
y is a ['-unit. [Restating, using the definition below:
Either x~1,y~p, or z=p, yzl.]

1: I'-prime if p is a non-unit, non-ZD, such that for
each pair ¢,d € I": If p o [c- d] then either p ¢ ¢
or ped.

Associates. In a commutative ring, elts o and (8
are assoctates, written « ~ [J, if there exists a
unit v st. [ = ua. [For emphasis, we might say strong
associates.| They are weak-associates, written
o~ G, if « 0{ pand o le 3 [i.e7 a € pl'and 5 € aF].

Ex 3: Prove Assoc = weak-Assoc.

Ex4: If o ~ 8 and a ¢ 7D, then «, 8 are (strong) associates.

Ex5: In Zj0, zero-divisors 2,4 are weak-associates. [This,
since 22 = 4 and 43=12 = 2]

Ex 6: With d ¢ a, prove: If « is a non-ZD, then d is a non-ZD.

And: If « is a unit, then d is a unit.

Are 2,4 (strong) associates?

1: Lemma. In a commRing”' T, each prime a is
irreducible. O

Proof. Consider factorization a = zy. Since o ¢ zy,
WLOG « ¢ z, i.e 3¢ with ac = . Hence

*: a = Ty =0ocy.

By defn, a ¢ ZD. We may thus cancel in (x), yielding
1 =cy. So y is a unit. ¢

“IMore generally, a commutative monoid.
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There are rings¥? with irreducible elements p which
are nonetheless not prime. However. ..

2: Lemma. Suppose commRing I" satisfies the Bézout
condition, that each GCD is a linear-combination.
Then each irreducible o is prime. O

Pf. Suppose « ¢ c:d.  WLOG « fc. Let

g = GCD(a,c). Were g =~ «, then « ¢ g ¢ ¢, a con-

tradiction. Thus, since « is irreducible, our ¢ ~ 1.
Bézout produces S, T € I' with

1 = Sa+Tec.
*: d = Sad+Ted = Sdao+ Ted.

Hence

By hyp, « ¢ cd, hence a divides RhS(x). So o o d.4

3: Lemma. In commRing I, if prime p divides product
a1 ---ag then p & o for some j. [Exer. 7] O

4: Prime-uniqueness thm. In commRing T", suppose
P1'P2:P3 Pk = q1°92°93 - qL

are equal products-of-primes. Then [ = K and, after
permuting the p primes, each p, ~ qy. O

Pf. [From Ex.4, previously, for non-ZD, relations ~ and =~ are
the same.| For notational simplicity, we do this in Z,
in which case p;, ~ g; will be replaced by p;, = q;..
FTSOC, consider a CEX which minimizes sum
K+L; necessarily positive. WLOG L>1. Thus
K>1. [Otherwise, q,; divides a unit, forcing q; to be a
unit; see Ex.la.] By the preceding lemma, q; divides
some p; WLOG q; o pi. Thus q; = py [since py
is prime and q, is not a unit|. Cancelling now gives
P1-P2  Pr—1=9q1°92 - qr_1, giving a CEX with a
smaller (x—1)+ (-1 sum. ¢

“2Consider the ring, I', of polys with coefficients in Zjs.
There, x> — 1 factors as [z — 5|[z + 5] and as [z — 1][z + 1].
Thus none of the four linear terms is prime. Yet each is I'-
irreducible. (Why?) This ring I" has zero-divisors (yuck!),
but there are natural subrings of C where Irred# Prime.
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Example where ~ # ~. Here a modification of an
example due to Irving (“Kap”) Kaplansky.
Let Q be the ring of real-valued continuous fncs
on [-2,2]. Define €,D € Q by: Fort > 0:
£(1) = D(t) — {t—l %fte [1,2]}‘
0 if t € [0,1]

E(t) = &(-t) and D(t) = —D(~t).
[So € is an Even fnc; D is odD.] Note € = fDand D = f¢,
where
1 ifte|l,2]
ft) = ¢t iftel1,1]

-1 ift e [-2,-1]

Hence € ~ D. [This f is not a unit, since f(0) = 0 has no
reciprocal. However, f is a non-ZD: For if fg = 0, then g must
be zero on [-2,2] ~. {0}. Cty of g then forces g = 0.]

Could there be a unit u € 2 with uD = €7 Well

u(2) = b ZEL, and u(2) = s ZE1.

~—

Cty of u() forces u to be zero somewhere on inter-
val (-2,2), hence u is not a unit. O

Addendum. By Ex.4, both € and D must be zero-
divisors. [EX(‘I.8Z Exhibit a function g€, not the zero-fnc,

such that &g = 0.] ]
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