

A lower bound on the rank of mixing extensions

Jonathan L. King*

University of Florida, Gainesville 32611-2082, squash@math.ufl.edu

ABSTRACT. If transformation R is a p -point extension of a mixing T then $p \cdot \text{rank}(T)$ lower bounds the rank of R .

If T is a factor of a transformation R what relationship is there between their respective ranks? Certainly $\text{rk}(T) \leq \text{rk}(R)$ but, in general, the rank of R need not exceed the rank of T even if the fibers of R over T are infinite (non-atomic). For example, one can make a weak-mixing rank-1 R as a direct product $T \times S$ of non-atomic transformations. This T will be rigid. However, if one assumes that T has *zero* rigidity, in particular if T is mixing, a coding argument can be applied to show

$$\text{rank}(R) \geq p \cdot \text{rank}(T)$$

whenever R is any p -point extension of T .

This is a second application of the Fundamental lemma of [1], which is a prerequisite to this note. Below, we briefly recapitulate the notation of that paper.

Terminology. For a measure preserving map T on a Lebesgue probability space (X, \mathcal{A}, μ) the **rigidity** number, $\rho(T)$, is the largest number in $[0, 1]$ such that there exists a sequence $\{k_n\}$ of integers going to infinity for which

$$\liminf_{n \rightarrow \infty} \mu(A \cap T^{-k_n} A) \geq \rho(T) \cdot \mu(A)$$

for all A . Evidently a mixing T has zero rigidity, $\rho(T) = 0$.

Given a partition P on X which generates under T and given an $x \in X$, let $x|_i$ denote the letter of P in which $T^i x$ finds itself and let $x|_a^b$ denote the substring $x|_a x|_{a+1} \cdots x|_{b-1}$ of length $b - a$. Let $|_a^b$ be a synonym for the “interval of integers” $[a, b) \cap \mathbb{Z}$.

Rank and coverings. Suppose $\mathbf{C} = \langle W_1, \dots, W_r \rangle$ is an ordered set of not-necessarily-distinct words all of a common length h , associated to which is a small positive number written $\bar{d}\text{-err}(\mathbf{C})$; such a \mathbf{C} was called a **palette**. Given a name $x \in X$ suppose we have a sequence $\{i_m, c(m)\}_{m=1}^\infty$

*The author was partially supported by NSF grant DMS8501519. Affiliation when the article was submitted: *Dept. of Mathematics, University of Maryland at College Park*

where $c(m) \in \{1, \dots, r\}$ and i_m is a natural number with $i_m + h \leq i_{m+1}$. Say that $\{i_m, c(m)\}_{m=1}^\infty$ is an ε -covering of $x|_0^\infty$ if

$$\bar{d}\left(x|_{i_m}^{i_m+h}, W_{c(m)}\right) \leq \bar{d}\text{-err}(\mathbf{C})$$

and $\bar{d}\text{-err}(\mathbf{C}) \leq \varepsilon$ and the set $\cup_{m=1}^\infty [i_m, i_m + h)$ of integers has lower density in \mathbb{N} exceeding $1 - \varepsilon$. Let $\text{len}(\mathbf{C})$ denote h and $|\mathbf{C}|$ denote r .

Definition 1. The (uniform) **rank** of an ergodic T , written $\text{rk}(T)$, can be computed from any generating partition P . Define $\text{rk}(T)$ to be the smallest r for which: Given any ε and N there exists a palette \mathbf{C} of r words, $\text{len}(\mathbf{C}) > N$, which can ε -cover (almost) every name $x|_0^\infty$.

Shift metric. Suppose we have two words $W = W|_0^h$ and $B = B|_0^h$ of common length h . Shift B by n positions and say that the \bar{d} distance between W and the shifted B is

$$\frac{1}{h} |\{i \in |_0^h : W|_i \neq B|_{i+n}\}| \tag{2}$$

with the understanding that when $i + n$ does not lie in $|_0^h$ say that $W|_i \neq B|_{i+n}$. Now define the **shift distance** $\bar{s}(W, B)$ to be the minimum of (2) taken over all integers n . This $\bar{s}(\cdot, \cdot)$ is a metric on the set of words of length h .

The fundamental lemma. The setting henceforth is an ergodic T, P and two natural numbers r and p . Suppose that for any ε and N there is a palette \mathbf{C} , with $|\mathbf{C}| = r$ and $\text{len}(\mathbf{C}) > N$, such that any name $x|_0^\infty$ has p distinct ε -coverings by the palette. Say that two coverings $\{i_m, c(m)\}_{m=1}^\infty$ and $\{i'_k, c'(k)\}_{k=1}^\infty$ are **distinct** if whenever $i_m = i'_k$ then $c(m) \neq c'(k)$.

The coding argument of [1; §3] obtains following, which we now formulate in more generality.

FUNDAMENTAL LEMMA. Suppose T has zero rigidity. Given any δ , then for any palette $\mathbf{C} = \langle W_1, \dots, W_r \rangle$ as above with ε sufficiently small and $\text{len}(\mathbf{C})$ sufficiently large: Each ball in \mathbf{C} of radius δ in the shift metric contains at least p distinct words.

That is, for each word $V \in \mathbf{C}$ there are p different values of $c \in \{1, \dots, r\}$ such that $\bar{s}(V, W_c) < \delta$.

THEOREM. Suppose T has rigidity zero and for each ε and N there exists a palette \mathbf{C} as above. Then

$$\text{rk}(T) \leq r/p.$$

PROOF. Let t denote $\text{rk}(T)$. Evidently there is a positive δ_0 such that for any palette \mathbf{C} with sufficiently small ε and large length, \mathbf{C} has a δ_0 -separated subset with t members; $\bar{s}(V^i, V^j) > \delta_0$ for some subset $V^1, \dots, V^t \in \mathbf{C}$. This is [1; lemma 7]. Now pick a δ less than $\delta_0/2$ and use the Fundamental lemma to provide a \mathbf{C} . The radius δ balls centered at the V^i are disjoint and each contains p members. Thus $r \geq p \cdot t$. \blacklozenge

Creating a palette \mathbf{C} for T . Now suppose $T : X \rightarrow X$ is a factor of an ergodic transformation $R : Y \rightarrow Y$ with $r := \text{rk}(R)$ finite. By the cutting and stacking characterization (see [2; §1] for details) of rank, one can build a generating partition Q for R such that there exist arbitrarily good palettes \mathbf{C} for the process R, Q having $\bar{d}\text{-err}(\mathbf{C})$ equal to zero.

Let $\varphi : Y \rightarrow X$ denote the factor homomorphism. Given any $\alpha > 0$ there exists a finite code $\widehat{\varphi}$ of codelength, say, L , which approximates φ : The set of Q -words of length $2L$ is mapped by $\widehat{\varphi}$ into the letters of P . Moreover, for (almost) every $y \in Y$

$$\text{density}\left(i \in \mathbb{N} : \widehat{\varphi}(y|_{i-L}^{i+L}) \neq \varphi(y)|_i\right) < \alpha.$$

Suppose $\{i_m, c(m)\}$ is a ε -covering with zero \bar{d} -error of some name $y|_0^\infty$ by a palette $\mathbf{C}' = \langle W'_1, \dots, W'_r \rangle$ of Q -h-words with length $h \gg L$. Create a palette $\mathbf{C} = \langle W_1, \dots, W_r \rangle$ of P -h-words. For each $W' \in \mathbf{C}'$ define the corresponding $W = W|_0^h$ as follows: When i in $|_L^{h-L}$ set $W|_i$ to be $\widehat{\varphi}(W'|_{i-L}^{i+L})$; then define $W|_0^L$ and $W|_{h-L}^h$ in any fixed way.

Evidently $\{i_m, c(m)\}$ is an “ ε -covering” of $\varphi(y)|_0^\infty$ by \mathbf{C} ; **but** with a \bar{d} -error of, essentially, $(2L/h) + \alpha$. Having fixed ε , we can pick α and code $\widehat{\varphi}$ and then choose a palette \mathbf{C}' with h sufficiently $\gg L$ so that $(2L/h) + \alpha$ is less than ε . Thus the resulting \mathbf{C} indeed ε -covers $\varphi(y)|_0^\infty$.

Obtaining multiple coverings. Fix an $x \in X$ and then two distinct points $y, z \in \varphi^{-1}(x)$. Palette \mathbf{C}' ε -covers each name: $y|_0^\infty$ by, say, $\{i_m, c(m)\}_{m=1}^\infty$ and $z|_0^\infty$ by $\{j_k, d(k)\}_{k=1}^\infty$. As argued above, these each give rise to a covering of $x|_0^\infty$ by \mathbf{C} . Now, without loss of generality these two coverings are distinct: A consequence of the ergodic theorem yields that, when y and z chosen sufficiently generic,

$$\text{UpperDensity}\{m : \exists k \text{ with } j_k = i_m \text{ and } d(k) = c(m)\}$$

can have been made arbitrarily small by having chosen \mathbf{C}' with $\text{len}(\mathbf{C}')$ sufficiently large. For a proof, see the joining argument of [3; §3].

Finally, suppose that the fibers of R over T have at least p points. Then picking first x and distinct generic points $y_1, \dots, y_p \in \varphi^{-1}(x)$ we obtain arbitrarily good palettes \mathbf{C} which have p distinct coverings of $x|_0^\infty$. The theorem above yields that $\text{rk}(R) \geq p \cdot \text{rk}(T)$.

REFERENCES

1. J.L. King, *For mixing transformations $\text{rank}(T^k) = k \cdot \text{rank}(T)$* , Israel J. Math. **56** (1986), 102–122.
2. J.L. King, *Joining-rank and the structure of finite rank mixing transformations*, J. d’Analyse Math. **51** (1988), 182–227.
3. J.L. King, *The commutant is the weak-closure of the powers, for rank-1 transformations*, Ergodic Theory and Dynamical Systems **6** (1986), 363–384.

Filename: Article/06Rankofextensions/rankofextensions.ams.tex
As of: Fri Oct 20, 1995 Typeset: 5October2008