

Rank-1 has zero entropy

Jonathan L.F. King
University of Florida, Gainesville FL 32611-2082, USA
squash@ufl.edu
 Webpage <http://people.clas.ufl.edu/squash/>
 31 August, 2015 (at 10:09)

Using stacks

Let $\overrightarrow{\text{STKs}} := (\Xi_n)_{n=1}^\infty$ be the stacks used to cut&stack a rank-1 T , on a non-atomic Lebesgue space (X, \mathcal{X}, μ) . Let L_n denote the height of Ξ_n .

Let $S_n \subset X$ denote the spacers adjoined to make the n -stack. Thus

$$\Xi_n \sqcup S_{n+1} = \Xi_{n+1}.$$

Let $A_n := \bigsqcup_{j=n+1}^\infty S_j$ be the spacers adjoined after stage- n . Certainly $\mu(A_n) \searrow 0$.

I first construct a particular 2-set generating partition $P = \langle\langle B, G \rangle\rangle$.

Step 1. For $(\Xi_n)_{n=1}^\infty$, I will DTASARenumber (Drop To A Subsequence And Renumber) several times, so as to gain a new property for $\overrightarrow{\text{STKs}}$. Later subsequencings will preserve the properties obtained earlier. I can initially DTASARenumber so that $L_n > n+3$, for all n .

First DTASARenumber so that there are at least 2^n copies of Ξ_n in Ξ_{n+1} . Now simply declare that the bottom-most copy of Ξ_n in Ξ_{n+1} is, in fact, spacer which is part of S_{n+1} . Since $n \mapsto 1/2^n$ is summable, Misters Borel and Cantelli tell me, for (almost) every x , that I changed my mind only finitely often as to what stage the point x was adjoined.

Courtesy of the above, then,

- 1: At least the bottom $n+2$ many levels of Ξ_n , are in S_n , that is, are n -spacer.

Step 2. Fix a sequence $\varepsilon_n \searrow 0$ and arrange, by DTASARenumbering, that

$$* : \quad \forall n : \quad L_n \cdot \mu(A_{n+1}) < \varepsilon_n.$$

How? Well, let $k_1 := 1$. Having already chosen $k_1 < k_2 < \dots < k_n$, pick $\ell > k_n$ smallest so that $L_{k_n} \cdot \mu(A_\ell) < \varepsilon_n$. Now let $k_{n+1} := \ell$. Continue. Lastly, renumber by renaming Ξ_{k_n} to Ξ_n . Now $(*)$ holds.

I can drop again to arrange that each ratio L_n/L_{n+1} be as small as desired. So it can certainly be arranged that

$$2: \quad L_n \cdot [\mu(A_{n+1}) + \frac{L_n}{L_{n+1}}] < \varepsilon_n,$$

for each n .

Defining a partition. Define $P = \langle\langle B, G \rangle\rangle$, by painting Blue and Green levels as follows: For $n = 1, 2, \dots$, the bottom $[n+2]$ levels of Ξ_n are all in S_n . Paint one level BLUE, then n levels GREEN, followed by one BLUE. This is the *n-tag*. Lastly, paint BLUE the *remaining* levels in S_n .

Courtesy of $(??)$, only spacer is being painted so there is no erasing going on. Since P allows one to unambiguously recognize the base of Ξ_n , it is a generator for T .

Counting L -words entirely within Ξ_{n+1} . Fix n and let $L := L_n$. How many T, P - h -words W are there, that start and stay in the $[n+1]$ -stack?

There are $n+3$ many L -words starting from the $n+3$ bottom-most levels of Ξ_{n+1} . Since the $[n+1]$ -tag is here, this is the only part of S_{n+1} which is not all BLUE.

Starting elsewhere in Ξ_{n+1} , an L -word is determined by three non-negative numbers $t+s+b=L$. Our L -word sees the *top* t levels of Ξ_n (some colored BLUE, some GREEN), followed by s levels of $[n+1]$ -spacer (all BLUE), followed by the *bottom* b many levels of Ξ_n . (Any of these three numbers could be zero.) Since W is determined by these three numbers, there are at most L^2 many words W . Together with the first paragraph, there are at most

$$n+3 + L^2 \stackrel{\text{WLOG}}{<} L^3$$

many P -words which start and stay in the $[n+1]$ -stack.

Upper bounding distropy

If an L -word W wasn't counted above, then it must start either in \mathbf{A}_{n+1} , or within the top L levels of Ξ_{n+1} . Let E denote the union of these two sets, and use \mathbf{E} for the ptn (E, E^c) . Let $\delta := \mu(E)$ and $\delta^c := 1 - \delta$.

Note that $\mathbf{P}_0^{L-1} \preceq \mathbf{E} \vee \mathbf{P}_0^{L-1}$. Thus

$$\begin{aligned}\mathcal{H}(\mathbf{P}_0^{L-1}) &\leq \delta \cdot [\text{Max distropy of a ptn with } 2^L \text{ atoms}] \\ &\quad \delta^c \cdot [\text{Max distropy of a ptn with } L^3 \text{ atoms}] \\ &\leq \delta L + \delta^c \cdot 3\log(L)\end{aligned}$$

This, together with (??) gives

$$3: \quad \frac{1}{L_n} \mathcal{H}(\mathbf{P}_0^{L_n-1}) \leq \varepsilon_n L_n + 3 \cdot \frac{\log(L_n)}{L_n}$$

4: **Theorem.** *If T is rank-1 then $\mathcal{E}(T)$ is zero.* ◇

Proof. Take a two-set generator \mathbf{P} , as above. By class theorems,

$$\mathcal{E}(T, \mathbf{P}) = \lim_{n \rightarrow \infty} \frac{1}{L_n} \mathcal{H}(\mathbf{P}_0^{L_n-1}).$$

And by (??), this is zero. Hence Bob is our Uncle. ◆

Filename: `Problems/Dynamics/RankOne/rank1-zeroentr.latex`
 As of: `Monday 31Aug2015`. Typeset: `31Aug2015 at 10:09`.