

Rank + Nullity theorem

Jonathan L.F. King
 University of Florida, Gainesville FL 32611-2082, USA
 squash@ufl.edu
 Webpage <http://squash.1gainesville.com/>
 23 October, 2023 (at 20:20)

Entrance. Here, \mathbf{V}, \mathbf{H} are finite-dimensional VSes over the same field, and $\mathbf{T}: \mathbf{V} \rightarrow \mathbf{H}$ is linear. Recall

$$\begin{aligned}\text{Nullity}(\mathbf{T}) &:= \text{Dim}(\text{Nul}(\mathbf{T})), \quad \text{and} \\ \text{Rank}(\mathbf{T}) &:= \text{Dim}(\text{Range}(\mathbf{T})).\end{aligned}$$

1: Rank-Nullity Thm. For $\mathbf{T}: \mathbf{V} \rightarrow \mathbf{H}$ as above,

$$\begin{aligned}\text{Rank}(\mathbf{T}) + \text{Nullity}(\mathbf{T}) &= \text{Dim}(\text{Dom}(\mathbf{T})) \\ &\stackrel{\text{here}}{=} \text{Dim}(\mathbf{V}).\end{aligned}\quad \diamond$$

Proof. Choose a basis $\mathcal{Z} = \{\mathbf{z}_1, \dots, \mathbf{z}_N\}$ for $\text{Ker}(\mathbf{T})$. [Mnemonic: \mathcal{Z} is for “zero”.] Pick a basis

$$\mathcal{H} = \{\mathbf{h}_1, \dots, \mathbf{h}_R\}$$

for $\text{Range}(\mathbf{T})$. Finally, for each index $r \in [1..R]$ pick a vector $\widehat{\mathbf{h}}_r \in \mathbf{T}^{-1}(\mathbf{h}_r)$; possible, since each \mathbf{h}_r is in $\text{Range}(\mathbf{T})$.

Our goal is to show that list

$$\mathcal{B} := (\mathbf{z}_1, \dots, \mathbf{z}_N, \widehat{\mathbf{h}}_1, \dots, \widehat{\mathbf{h}}_R)$$

is a \mathbf{V} -basis.

Proof: \mathcal{B} is LI. Consider a linear-combination

$$* : \left[\sum_{k=1}^N \beta_k \mathbf{z}_k \right] + \left[\sum_{r=1}^R \alpha_r \widehat{\mathbf{h}}_r \right] = \mathbf{0}_{\mathbf{V}}.$$

Applying $\mathbf{T}()$ yields that

$$**: \mathbf{0}_{\mathbf{H}} + \left[\sum_{r=1}^R \alpha_r \mathbf{h}_r \right] = \mathbf{0}_{\mathbf{H}},$$

since each $\mathbf{T}(\mathbf{z}_k) = \mathbf{0}_{\mathbf{H}}$, and $\mathbf{T}(\widehat{\mathbf{h}}_r) = \mathbf{h}_r$. But \mathcal{H} is LI; consequently all the α -numbers are zero.

Our (*) now says that

$$\sum_{k=1}^N \beta_k \mathbf{z}_k = \mathbf{0}_{\mathbf{V}}.$$

But \mathcal{Z} is LI, so all β -numbers are zero.

QED

Pf: Subspace $\text{Spn}(\mathcal{B})$ is all of \mathbf{V} . Consider an arbitrary vector $\mathbf{p} \in \mathbf{V}$. Thus there exist scalars α_r st.

$$\mathbf{T}(\mathbf{p}) = \sum_{r=1}^R \alpha_r \mathbf{h}_r.$$

Define

$$\widehat{\mathbf{p}} := \sum_{r=1}^R \alpha_r \widehat{\mathbf{h}}_r.$$

Since \mathbf{T} is linear,

$$\mathbf{T}(\mathbf{p} - \widehat{\mathbf{p}}) = \mathbf{T}(\mathbf{p}) - \mathbf{T}(\widehat{\mathbf{p}}) \stackrel{\text{note}}{=} \mathbf{0}_{\mathbf{H}}.$$

Thus difference-vector $\mathbf{p} - \widehat{\mathbf{p}} \in \text{Ker}(\mathbf{T})$. So there exist scalars β_k for which

$$\sum_{k=1}^N \beta_k \mathbf{z}_k = \mathbf{p} - \widehat{\mathbf{p}}.$$

Hence vector

$$\mathbf{p} \stackrel{\text{note}}{=} \left[\sum_{k=1}^N \beta_k \mathbf{z}_k \right] + \left[\sum_{r=1}^R \alpha_r \widehat{\mathbf{h}}_r \right] \quad \diamond$$

is in $\text{Spn}(\mathcal{B})$. QED

The next page has the same proof, but allowing ∞ -dim' al spaces. It indexes vectors by themselves, hence is notationally simpler.

Prolegomenon. Here, \mathbf{V}, \mathbf{H} are Vses over a field F , and $\mathsf{T}: \mathbf{V} \rightarrow \mathbf{H}$ is linear. Recall

$$\begin{aligned}\text{Nullity}(\mathsf{T}) &:= \text{Dim}(\text{Nul}(\mathsf{T})), \quad \text{and} \\ \text{Rank}(\mathsf{T}) &:= \text{Dim}(\text{Range}(\mathsf{T})),\end{aligned}$$

where these dimensions are (possibly infinite) cardinals.

Recall that a *linear-combination* over a set, Ω , of vectors, has form

$$\sum_{\omega \in \Omega} \varphi(\omega) \cdot \omega,$$

where function $\varphi: \Omega \rightarrow \mathsf{F}$ is *finitely supported*; that is, the set $\{\omega \in \Omega \mid \varphi(\omega) \neq 0\}$ is finite.

2: General Rank-Nullity Thm. For $\mathsf{T}: \mathbf{V} \rightarrow \mathbf{H}$ as above,

$$\text{Rank}(\mathsf{T}) + \text{Nullity}(\mathsf{T}) = \text{Dim}(\text{Dom}(\mathsf{T})). \quad \diamond$$

Proof. Pick a basis \mathcal{Z} for $\text{Ker}(\mathsf{T})$, and a basis \mathcal{H} for $\text{Range}(\mathsf{T})$. For each $\mathbf{h} \in \mathcal{H}$, choose a vector $\widehat{\mathbf{h}} \in \mathsf{T}^{-1}(\mathbf{h})$. [In principle, this uses the **AXIOM OF CHOICE**.]

Define

$$\widehat{\mathcal{H}} := \{\widehat{\mathbf{h}} \mid \mathbf{h} \in \mathcal{H}\}.$$

Our goal: The disjoint union $\mathcal{B} := \mathcal{Z} \cup \widehat{\mathcal{H}}$ [of multisets] is a \mathbf{V} -basis.

Pf: \mathcal{B} is LI. Consider a linear-combination

$$* : \left[\sum_{\mathbf{z} \in \mathcal{Z}} \beta(\mathbf{z}) \cdot \mathbf{z} \right] + \left[\sum_{\mathbf{h} \in \mathcal{H}} \alpha(\mathbf{h}) \cdot \widehat{\mathbf{h}} \right] = \mathbf{0}_{\mathbf{V}}.$$

[So β and α are each finitely-supported scalar fns.] Applying $\mathsf{T}()$ yields that

$$**: \mathbf{0}_{\mathbf{H}} + \left[\sum_{\mathbf{h} \in \mathcal{H}} \alpha(\mathbf{h}) \cdot \mathbf{h} \right] = \mathbf{0}_{\mathbf{H}},$$

since each $\mathsf{T}(\widehat{\mathbf{h}}) = \mathbf{h}$. But \mathcal{H} is LI; consequently the $\alpha()$ function is identically-zero.

Our (*) now says that

$$\left[\sum_{\mathbf{z} \in \mathcal{Z}} \beta(\mathbf{z}) \cdot \mathbf{z} \right] = \mathbf{0}_{\mathbf{V}}.$$

But \mathcal{Z} is LI, so $\beta()$ is identically-zero. QED

Pf: Subspace $\text{Spn}(\mathcal{B})$ is all of \mathbf{V} . Consider an arbitrary vector $\mathbf{p} \in \mathbf{V}$. Thus there exists $\alpha()$ so that

$$\mathsf{T}(\mathbf{p}) = \sum_{\mathbf{h} \in \mathcal{H}} \alpha(\mathbf{h}) \cdot \mathbf{h}.$$

Define

$$\widehat{\mathbf{p}} := \sum_{\mathbf{h} \in \mathcal{H}} \alpha(\mathbf{h}) \cdot \widehat{\mathbf{h}}.$$

Because T is linear,

$$\mathsf{T}(\mathbf{p} - \widehat{\mathbf{p}}) = \mathsf{T}(\mathbf{p}) - \mathsf{T}(\widehat{\mathbf{p}}) \stackrel{\text{note}}{=} \mathbf{0}_{\mathbf{H}}.$$

Since difference-vector $\mathbf{p} - \widehat{\mathbf{p}} \in \text{Ker}(\mathsf{T})$, there exists a linear-combination $\left[\sum_{\mathbf{z} \in \mathcal{Z}} \beta(\mathbf{z}) \cdot \mathbf{z} \right]$ that equals difference $[\mathbf{p} - \widehat{\mathbf{p}}]$. Hence

$$\mathbf{p} \stackrel{\text{note}}{=} \left[\sum_{\mathbf{z} \in \mathcal{Z}} \beta(\mathbf{z}) \cdot \mathbf{z} \right] + \left[\sum_{\mathbf{h} \in \mathcal{H}} \alpha(\mathbf{h}) \cdot \widehat{\mathbf{h}} \right] \quad \diamond$$

is in $\text{Spn}(\mathcal{B})$. QED

Filename: Problems/Algebra/LinearAlg/rank-nullity-thm.latex

As of: Tuesday 29Sep2015. Typeset: 23Oct2023 at 20:20.