

Generalized parentheses. Common:

() Parentheses. [] Brackets. ⟨ ⟩ Angle-brackets.
 { } Braces. || Vertical bars (abs.value, cardinality).

Less common: ⌊ ⌋ Floor. ⌈ ⌉ Ceiling. ||| Norm-of.
 ||| Double-bracket. ⟨⟨ ⟩⟩ Double-angle-bracket.

Number Sets. Expression $k \in \mathbb{N}$ [read as “ k is an element of \mathbb{N} ” or “ k in \mathbb{N} ”] means that k is a natural number; a **natnum**. Expression $\mathbb{N} \ni k$ [read as “ \mathbb{N} owns k ”] is a synonym for $k \in \mathbb{N}$.

\mathbb{N} = natural numbers = $\{0, 1, 2, \dots\}$.

\mathbb{Z} = integers = $\{\dots, -2, -1, 0, 1, \dots\}$. For the set $\{1, 2, 3, \dots\}$ of positive integers, the **posints**, use \mathbb{Z}_+ . Use \mathbb{Z}_- for the negative integers, the **negints**.

\mathbb{Q} = rational numbers = $\{\frac{p}{q} \mid p \in \mathbb{Z} \text{ and } q \in \mathbb{Z}_+\}$. Use \mathbb{Q}_+ for the positive rationals and \mathbb{Q}_- for the negative rationals.

\mathbb{R} = reals. The **posreals** \mathbb{R}_+ and the **negreals** \mathbb{R}_- .

\mathbb{C} = complex numbers, also called the **complexes**.

For $\omega \in \mathbb{C}$, let “ $\omega > 5$ ” mean “ ω is real and $\omega > 5$ ”.

[Use the same convention for $\geq, <, \leq$, and also if 5 is replaced by any real number.]

Use $\mathbb{R} = [-\infty, +\infty] := \{-\infty\} \cup \mathbb{R} \cup \{+\infty\}$, the **extended reals**.

An “**interval of integers**” $[b..c]$ means the intersection $[b, c] \cap \mathbb{Z}$; ditto for open and closed intervals. So $[e..2\pi] = \{3, 4, 5, 6\} = [3..6] = (2..6]$. We allow b and c to be $\pm\infty$; so $(-\infty..-1]$ is \mathbb{Z}_- . And $[-\infty..-1]$ is $\{-\infty\} \cup \mathbb{Z}_-$.

Floor function: $\lfloor \pi \rfloor = 3$, $\lfloor -\pi \rfloor = -4$.

Ceiling fnc: $\lceil \pi \rceil = 4$. Absolute value: $|-6| = 6 = |6|$ and $|-5 + 2i| = \sqrt{29}$.

Mathematical objects. Seq: ‘sequence’. poly(s): ‘polynomial(s)’. irred: ‘irreducible’. Coeff: ‘coefficient’ and var(s): ‘variable(s)’ and parm(s): ‘parameter(s)’. Expr.: ‘expression’. Fnc: ‘function’ (so ratfnc: means rational function, a ratio of polynomials). trnfn: ‘transformation’. cty: ‘continuity’. cts: ‘continuous’. diff’able: ‘differentiable’. CoV: ‘Change-of-Variable’. Col: ‘Constant of Integration’. Lol: ‘Limit(s) of Integration’. RoC: ‘Radius of Convergence’.

Soln: ‘Solution’. Thm: ‘Theorem’. Prop’n: ‘Proposition’. CEX: ‘Counterexample’. eqn: ‘equation’.

RhS: ‘RightHand side’ of an eqn or inequality. LhS: ‘lefthand side’. Sqrt or Sqroot: ‘square-root’, e.g, “the sqroot of 16 is 4”. Ptn: ‘partition’, but pt: ‘point’ as in “a fixed-pt of a map”.

Binop: ‘Binary operator’. Binrel: ‘Binary relation’. FTC: ‘Fund. Thm of Calculus’. IVT: ‘intermediate-Value Thm’. MVT: ‘Mean-Value Thm’.

The **logarithm** function, defined for $x > 0$, is $\log(x) := \int_1^x \frac{dv}{v}$. Its inverse-fnc is $\exp()$.

For $x > 0$, then, $\exp(\log(x)) = x = e^{\log(x)}$. For real t , naturally, $\log(\exp(t)) = t = \log(e^t)$.

PolyExp: ‘Polynomial-times-exponential’, e.g, $[3 + t^2] \cdot e^{4t}$. PolyExp-sum: ‘Sum of polyexps’. E.g, $f(t) := 3te^{2t} + [t^2] \cdot e^t$ is a polyexp-sum.

Phrases. WLOG: ‘Without loss of generality’. IFF: ‘if and only if’. TFAE: ‘The following are equivalent’. ITOf: ‘In Terms Of’. OTForm: ‘of the form’. FTSOC: ‘For the sake of contradiction’. And \nexists = “Contradiction”.

IST: ‘It Suffices To’, as in ISTShow, ISTExhibit.

Use w.r.t: ‘with respect to’ and s.t: ‘such that’.

Latin: e.g: *exempli gratia*, ‘for example’. i.e: *id est*, ‘that is’. N.B: *Nota bene*, ‘Note well’. inter alia: ‘among other things’. QED: *quod erat demonstrandum*, meaning “end of proof”.

Sequence notation. A **sequence** \vec{x} abbreviates $(x_0, x_1, x_2, x_3, \dots)$. For a set Ω , expression “ $\vec{x} \subset \Omega$ ” means $[\forall n: x_n \in \Omega]$. Use $\text{Tail}_N(\vec{x})$ for the subsequence

$$(x_N, x_{N+1}, x_{N+2}, \dots)$$

of \vec{x} . Given a fnc $f: \Omega \rightarrow \Lambda$ and an Ω -sequence \vec{x} , let $f(\vec{x})$ be the Λ -sequence $(f(x_1), f(x_2), f(x_3), \dots)$.

Suppose Ω has an addition and multiplication. For Ω -seqs \vec{x} and \vec{y} , then, let $\vec{x} + \vec{y}$ be the sequence whose n^{th} member is $x_n + y_n$. I.e

$$\vec{x} + \vec{y} = [n \mapsto [x_n + y_n]].$$

Similarly, $\vec{x} \cdot \vec{y}$ denotes seq $[n \mapsto [x_n \cdot y_n]]$.

SeLo [2022t] quizzes

(Recall, the lowest MQ score is dropped. Consequently, there is no make-up for the first missed MQ.)

P1: Fri.
02 Sep $\mathcal{P}(\mathcal{P}(3\text{-stooges}))$ has $\lfloor \dots \rfloor$ elements.

P2: Fri.
09 Sep Binomial coefficient $\binom{7}{4} = \lfloor \dots \rfloor = \underline{\dots}$.

The number of permutations of “PREPPER”, as a multinomial coefficient, is $\underline{\dots} = \underline{\dots}$.

P3: Wed.
14 Sep The coeff of x^7y^{12} in $[5x + y^3 + 1]^{30}$ is $\lfloor \dots \rfloor$.

[Write your answer as a product of powers and a multinomial. Optionally, you can expand the multinomial as a product of binomials.]

P4: Wed.
14 Sep The number of ways of picking 4 objects from 8 types is $\left[\begin{smallmatrix} 8 \\ 4 \end{smallmatrix} \right] = \underline{\dots}$.

And

$\left[\begin{smallmatrix} 8 \\ 4 \end{smallmatrix} \right] = \left[\begin{smallmatrix} T \\ K \end{smallmatrix} \right]$, where $T = \lfloor \dots \rfloor \neq 8$, and $K = \lfloor \dots \rfloor \neq 4, 1$.

P5: Mon.
17 Oct *Am I in class today?*

circle one “Yes!” “Of course!”

“I wouldn’t miss it for the world!”

P6: Mod.
31 Oct For a finite list \mathcal{S} of posints, define

$$\mu_{\mathcal{S}}(N) := \left\{ k \in [1..N] \mid \exists d \in \mathcal{S} \text{ with } d \bullet k \right\}.$$

Use Inclusion-Exclusion to compute

$$\left| \mu_{\{3,5,7\}}(96) \right| = \lfloor \dots \rfloor.$$

P7: Fri.
18 Nov An explicit bijection $\psi: \mathbb{Z} \leftrightarrow \mathbb{N}$ is this:

If $n \geq 0$, then $\psi(n) := \lfloor \dots \rfloor$.

If $n < 0$, then $\psi(n) := \lfloor \dots \rfloor$.

P8: Mon. 21 Nov Let $\mathbb{S}_{\mathbb{N}}$ be the set of *permutations* of \mathbb{N} . Circle those of following sets which are equinumerous with $\mathbb{N}^{\mathbb{N}}$:

\mathbb{N} \mathbb{R} $\mathbb{N} \times \mathbb{R}$ $2^{\mathbb{R}}$ $\mathbb{R}^{\mathbb{N}}$ $\mathbb{R}^{\mathbb{R}}$ $\mathbb{S}_{\mathbb{N}}$

[Schröder-Bernstein is useful for some of these.]

P9: Mon. 28 Nov To the interval $J := (-\frac{\pi}{2}, \frac{\pi}{2})$, define a bijection $g: (0, 1) \leftrightarrow J$ by $g(x) :=$

.....

Using this g and a trigonometric fnc, define a bijection $h: (0, 1) \leftrightarrow \mathbb{R}$ by $h(x) :=$

.....

PA: Fri. 02 Dec $\mathbf{A} := \{(6, 2), (2, 7), (5, 2), (7, 3), (7, 5), (3, 4), (1, 3), (1, 5)\}$ is a binrel on $[1..7]$, with transitive closure \mathbf{R} . Then:

$2\mathbf{R}2$ is T F . $4\mathbf{R}6$ is T F . $7\mathbf{R}7$ is T F .

PB: Mon. 05 Dec *EoS 2022 Games Party*, from 11:45am–4pm, will take place at *Pascal's Cafe* on Wedn. 7Dec.

Circle Yes! True! I-have-a-game!

Games Party: **!!**<sub>Wed.
07 Dec</sub> Bring games and look
photogenic, for our traditional **Games Party**, from
11:45 am to 4 pm, at Pascal's Cafe.