

Number Sets. Expression $k \in \mathbb{N}$ [read as “ k is an element of \mathbb{N} ” or “ k in \mathbb{N} ”] means that k is a natural number; a **natnum**. Expression $\mathbb{N} \ni k$ [read as “ \mathbb{N} owns k ”] is a synonym for $k \in \mathbb{N}$.

\mathbb{N} = natural numbers = $\{0, 1, 2, \dots\}$.

\mathbb{Z} = integers = $\{\dots, -2, -1, 0, 1, \dots\}$. For the set $\{1, 2, 3, \dots\}$ of positive integers, the **posints**, use \mathbb{Z}_+ . Use \mathbb{Z}_- for the negative integers, the **negints**.

\mathbb{Q} = rational numbers = $\{\frac{p}{q} \mid p \in \mathbb{Z} \text{ and } q \in \mathbb{Z}_+\}$. Use \mathbb{Q}_+ for the positive rationals and \mathbb{Q}_- for the negative rationals.

\mathbb{R} = reals. The **posreals** \mathbb{R}_+ and the **negreals** \mathbb{R}_- .

\mathbb{C} = complex numbers, also called the **complexes**.

For $\omega \in \mathbb{C}$, let “ $\omega > 5$ ” mean “ ω is real and $\omega > 5$ ”.

[Use the same convention for $\geq, <, \leq$, and also if 5 is replaced by any real number.]

Use $\bar{\mathbb{R}} = [-\infty, +\infty] := \{-\infty\} \cup \mathbb{R} \cup \{+\infty\}$, the **extended reals**.

An “*interval of integers*” $[b..c]$ means the intersection $[b, c] \cap \mathbb{Z}$; ditto for open and closed intervals. So $[e..2\pi] = \{3, 4, 5, 6\} = [3..6] = (2..6]$. We allow b and c to be $\pm\infty$; so $(-\infty..-1]$ is \mathbb{Z}_- . And $[-\infty..-1]$, is $\{-\infty\} \cup \mathbb{Z}_-$.

Floor function: $\lfloor \pi \rfloor = 3$, $\lfloor -\pi \rfloor = -4$. Ceiling fnc: $\lceil \pi \rceil = 4$. Absolute value: $|-6| = 6 = |6|$ and $|-5 + 2i| = \sqrt{29}$.

Mathematical objects. Seq: ‘sequence’. poly(s): ‘**polynomial(s)**’. irred: ‘**irreducible**’. Coeff: ‘**coefficient**’ and var(s): ‘**variable(s)**’ and parm(s): ‘**parameter(s)**’. Expr.: ‘**expression**’. Fnc: ‘**function**’ (so ratfnc: means rational function, a ratio of polynomials). trnfn: ‘**transformation**’. cty: ‘**continuity**’. cts: ‘**continuous**’. diff’able: ‘**differentiable**’. CoV: ‘**Change-of-Variable**’. Col: ‘**Constant of Integration**’. Lol: ‘**Limit(s) of Integration**’. RoC: ‘**Radius of Convergence**’.

Soln: ‘**Solution**’. Thm: ‘**Theorem**’. Prop’n: ‘**Proposition**’. CEX: ‘**Counterexample**’. eqn: ‘**equation**’. RhS: ‘**RightHand side**’ of an eqn or inequality. LhS: ‘**lefthand side**’. Sqrt or Sqroot: ‘**square-root**’, e.g, “the sqroot of 16 is 4”. Ptn: ‘**partition**’, but pt: ‘**point**’ as in “a fixed-pt of a map”.

Binop: ‘**Binary operator**’. Binrel: ‘**Binary relation**’.

FTC: ‘*Fund. Thm of Calculus*’. IVT: ‘*intermediate-Value Thm*’. MVT: ‘*Mean-Value Thm*’.

The **logarithm** function, defined for $x > 0$, is $\log(x) := \int_1^x \frac{dv}{v}$. Its inverse-fnc is **exp()**.

For $x > 0$, then, $\exp(\log(x)) = x = e^{\log(x)}$. For real t , naturally, $\log(\exp(t)) = t = \log(e^t)$.

PolyExp: ‘**Polynomial-times-exponential**’, e.g, $[3 + t^2] \cdot e^{4t}$. PolyExp-sum: ‘**Sum of polyexps**’. E.g, $f(t) := 3te^{2t} + [t^2] \cdot e^t$ is a polyexp-sum.

Phrases. WLOG: ‘*Without loss of generality*’. IFF: ‘*if and only if*’. TFAE: ‘*The following are equivalent*’. ITOf: ‘*In Terms Of*’. OTForm: ‘*of the form*’. FTSOC: ‘*For the sake of contradiction*’. And \mathbb{X} = “*Contradiction*”.

IST: ‘*It Suffices To*’, as in ISTShow, ISTExhibit.

Use w.r.t: ‘*with respect to*’ and s.t: ‘*such that*’.

Latin: e.g: *exempli gratia*, ‘*for example*’. i.e: *id est*, ‘*that is*’. N.B: *Nota bene*, ‘*Note well*’. inter alia: ‘*among other things*’. QED: *quod erat demonstrandum*, meaning “end of proof”.

Bi/Multi-nomial coeffs. For a natnum n , use “ $n!$ ” to mean “ n factorial”; the product of all posints $\leq n$. So $3! = 3 \cdot 2 \cdot 1 = 6$ and $5! = 120$. Also $0! = 1 = 1!$.

For natnum B and arb. complex number α , define

Rising Fctril: $[\alpha \uparrow B] := \alpha \cdot [\alpha + 1] \cdot [\alpha + 2] \cdots [\alpha + [B-1]]$,

Falling Fctril: $[\alpha \downarrow B] := \alpha \cdot [\alpha - 1] \cdot [\alpha - 2] \cdots [\alpha - [B-1]]$.

E.g., $[\mathbf{B} \downarrow \mathbf{B}] = B! = [\mathbf{1} \uparrow \mathbf{B}]$. Two further examples,

$$\left[\frac{2}{7} \downarrow 4 \right] = \frac{2}{7} \cdot \frac{-5}{7} \cdot \frac{-12}{7} \cdot \frac{-19}{7} \text{ and } [\mathbf{1} \downarrow 3] = 1 \cdot 0 \cdot -1 = 0.$$

In particular, for $n \in \mathbb{N}$: If $B > n$ then $[\mathbf{n} \downarrow \mathbf{B}] = 0$. We pronounce $[\mathbf{5} \downarrow \mathbf{B}]$ as “5 falling-factorial B ”.

Binomial. The *binomial coefficient* $\binom{7}{3}$, read “7 choose 3”, means *the number of ways of choosing 3 objects from 7 distinguishable objects*. Emphasising putting 3 objects in our left pocket and the remaining 4 in our right, we may write the coeff as $\binom{7}{3,4}$. [Read as “7 choose 3-comma-4.”] Evidently

$$\dagger: \binom{N}{j} \xrightarrow{\text{with } k := N - j} \binom{N}{j, k} = \frac{N!}{j! \cdot k!} = \frac{[\mathbf{N} \downarrow j]}{j!}.$$

Note $\binom{7}{0} = \binom{7}{0,7} = 1$. Finally, the Binomial theorem says

$$\ddagger: [x + y]^N = \sum_{j+k=N} \binom{N}{j, k} \cdot x^j y^k,$$

where (j, k) ranges over all *ordered* pairs of natural numbers with sum N .

For natnum N , binomials satisfy this addition law:

$$\ast: \binom{N+1}{B+1} = \overbrace{\binom{N}{B}}^{\text{Pick last object.}} + \overbrace{\binom{N}{B+1}}^{\text{Avoid last object.}}.$$

Extending this to all $B \in \mathbb{Z}$ forces:

$$\binom{N}{B} = 0, \quad \text{when } B > N \text{ or } B \text{ negative.}$$

Case $B > N$ is automatic in formula $\binom{N}{B} = \frac{[\mathbf{N} \downarrow \mathbf{B}]}{B!}$.

Multinomial. In general, for natural numbers $\mathbf{N} = k_1 + \dots + k_P$, the *multinomial coefficient* $\binom{N}{k_1, k_2, \dots, k_P}$ is the number of ways of partitioning N objects, by putting k_1 objects in pocket-one, k_2 objects in pocket-two, … putting k_P objects in the P^{th} pocket. Easily

$$\ddagger: \binom{N}{k_1, k_2, \dots, k_P} = \frac{N!}{k_1! \cdot k_2! \cdots k_P!}.$$

Unsurprisingly, $[x_1 + \dots + x_P]^N$ equals the sum of terms

$$\ddagger\ddagger: \binom{N}{k_1, \dots, k_P} \cdot x_1^{k_1} \cdot x_2^{k_2} \cdots x_P^{k_P},$$

taken over all natnum-tuples $\vec{k} = (k_1, \dots, k_P)$ that sum to N . [That is multinomial analog of the Binomial Thm.]

Define the sum $S_\ell := k_1 + k_2 + \dots + k_\ell$. Then multinomial LHS(\ddagger) equals this product of binomials:

$$\binom{N}{k_1} \cdot \binom{N - S_1}{k_2} \cdot \binom{N - S_2}{k_3} \cdots \binom{N - S_{P-1}}{k_P}.$$

[The last term is $\binom{k_P}{k_P} \stackrel{\text{note}}{=} 1$.]

Operations on Sets. Use \in for “is an element of”. E.g, letting \mathbb{P} be the set of primes, then, $5 \in \mathbb{P}$ yet $6 \notin \mathbb{P}$. Changing the emphasis, $\mathbb{P} \ni 5$ [“ \mathbb{P} owns 5”] yet $\mathbb{P} \not\ni 6$ [“ \mathbb{P} does-not-own 6”]

For subsets A and B of the same space, Ω , the *inclusion relation* $A \subset B$ means:

$$\forall \omega \in A, \text{ necessarily } B \ni \omega.$$

And this can be written $B \supset A$. Use $A \subsetneq B$ for *proper inclusion*, i.e., $A \subset B$ yet $A \neq B$.

The *difference set* $B \setminus A$ is $\{\omega \in B \mid \omega \notin A\}$. Employ A^c for the *complement* $\Omega \setminus A$. Use $A \Delta B$ for *symmetric difference* $[A \setminus B] \cup [B \setminus A]$. Furthermore

$A \boxdot B$, Sets A & B have *at least one* point in common; they intersect.

$A \sqcap B$, The sets have *no* common point; disjoint.

The symbol “ $A \blacksquare B$ ” both asserts intersection *and* represents the set $A \cap B$. For a collection $\mathcal{C} = \{E_j\}_j$ of sets in Ω , let the *disjoint union* $\bigsqcup_j E_j$ or $\bigsqcup(\mathcal{C})$ represent the union $\bigcup_j E_j$ and also asserts that the sets are *pairwise disjoint*.

See next page...

SeLo [2020g] quizzes

P1: Fri.
24 Jan Multinomial coefficient $\binom{9}{4, 2, 3} = \text{.....} =$

[Note: Write your ans. ITOf factorials, then also write it as a single integer, or product of two, without factorials.]

P5: Fri.
21 Feb Consider binrels on $\Omega := \text{Stooges} := \{M, L, C\}$.

There are

Anti-reflexive binrels, and

Reflexive binrels.

└...

and Symmetric binrels. The number of strict total-orders is

P2: Fri.
31 Jan Write the free vars in each of these expressions.

Due to COVID-19, we had only 5 quizzes.

$$\exists n \in \mathbb{N}: f(n) \subset \underbrace{\bigcup_{\ell=p-4}^{p+7} \{x \in \mathbb{Z} \mid \ell \cdot n \equiv_5 x^2\}}_{\substack{E1 \\ E2}} \quad E3$$

E3: *E2:* *E1:*

P3: Mon.
03 Feb The number of permutations of “PREPPER”, as a multinomial

coefficient, is numeral

P4: Wed.
19 Feb Relation **R** is a binrel on set \mathbb{N} , defined by xRy
IFF $x^2 = 5y$.

Assertion “**Relation \mathbf{R} is reflexive**” is

T F

Assertion “**Relation \mathbf{R} is antireflexive**” is