

Number Sets. Expression $k \in \mathbb{N}$ [read as “ k is an element of \mathbb{N} ” or “ k in \mathbb{N} ”] means that k is a natural number; a **natnum**. Expression $\mathbb{N} \ni k$ [read as “ \mathbb{N} owns k ”] is a synonym for $k \in \mathbb{N}$.

\mathbb{N} = natural numbers = $\{0, 1, 2, \dots\}$.

\mathbb{Z} = integers = $\{\dots, -2, -1, 0, 1, \dots\}$. For the set $\{1, 2, 3, \dots\}$ of positive integers, the **posints**, use \mathbb{Z}_+ . Use \mathbb{Z}_- for the negative integers, the **negints**.

\mathbb{Q} = rational numbers = $\{\frac{p}{q} \mid p \in \mathbb{Z} \text{ and } q \in \mathbb{Z}_+\}$. Use \mathbb{Q}_+ for the positive rationals and \mathbb{Q}_- for the negative rationals.

\mathbb{R} = reals. The **posreals** \mathbb{R}_+ and the **negreals** \mathbb{R}_- .

\mathbb{C} = complex numbers, also called the **complexes**.

For $\omega \in \mathbb{C}$, let “ $\omega > 5$ ” mean “ ω is real and $\omega > 5$ ”. [Use the same convention for $\geq, <, \leq$, and also if 5 is replaced by any real number.]

Use $\bar{\mathbb{R}} = [-\infty, +\infty] := \{-\infty\} \cup \mathbb{R} \cup \{+\infty\}$, the **extended reals**.

An “*interval of integers*” $[b..c]$ means the intersection $[b, c] \cap \mathbb{Z}$; ditto for open and closed intervals. So $[e..2\pi] = \{3, 4, 5, 6\} = [3..6] = (2..6]$. We allow b and c to be $\pm\infty$; so $(-\infty..-1]$ is \mathbb{Z}_- . And $[-\infty..-1]$, is $\{-\infty\} \cup \mathbb{Z}_-$.

Floor function: $\lfloor \pi \rfloor = 3$, $\lfloor -\pi \rfloor = -4$. Ceiling fnc: $\lceil \pi \rceil = 4$. Absolute value: $|-6| = 6 = |6|$ and $|-5 + 2i| = \sqrt{29}$.

Mathematical objects. Seq: ‘sequence’. poly(s): ‘polynomial(s)’. irred: ‘irreducible’. Coeff: ‘coefficient’ and var(s): ‘variable(s)’ and parm(s): ‘parameter(s)’. Expr.: ‘expression’. Fnc: ‘function’ (so ratfnc: means rational function, a ratio of polynomials). trnfn: ‘transformation’. cty: ‘continuity’. cts: ‘continuous’. diff’able: ‘differentiable’. CoV: ‘Change-of-Variable’. Col: ‘Constant of Integration’. Lol: ‘Limit(s) of Integration’. RoC: ‘Radius of Convergence’.

Soln: ‘Solution’. Thm: ‘Theorem’. Prop’n: ‘Proposition’. CEX: ‘Counterexample’. eqn: ‘equation’. RhS: ‘RightHand side’ of an eqn or inequality. LhS: ‘lefthand side’. Sqrt or Sqroot: ‘square-root’, e.g, “the sqroot of 16 is 4”. Ptn: ‘partition’, but pt: ‘point’ as in “a fixed-pt of a map”.

Binop: ‘Binary operator’. Binrel: ‘Binary relation’.

FTC: ‘Fund. Thm of Calculus’. IVT: ‘intermediate-Value Thm’. MVT: ‘Mean-Value Thm’.

The **logarithm** function, defined for $x > 0$, is $\log(x) := \int_1^x \frac{dv}{v}$. Its inverse-fnc is **exp()**.

For $x > 0$, then, $\exp(\log(x)) = x = e^{\log(x)}$. For real t , naturally, $\log(\exp(t)) = t = \log(e^t)$.

PolyExp: ‘Polynomial-times-exponential’, e.g, $[3 + t^2] \cdot e^{4t}$. PolyExp-sum: ‘Sum of polyexps’. E.g, $f(t) := 3te^{2t} + [t^2] \cdot e^t$ is a polyexp-sum.

Phrases. WLOG: ‘Without loss of generality’. IFF: ‘if and only if’. TFAE: ‘The following are equivalent’. ITOf: ‘In Terms Of’. OTForm: ‘of the form’. FTSOC: ‘For the sake of contradiction’. And \nexists = “Contradiction”.

IST: ‘It Suffices To’, as in ISTShow, ISTExhibit.

Use w.r.t: ‘with respect to’ and s.t: ‘such that’.

Latin: e.g: *exempli gratia*, ‘for example’. i.e: *id est*, ‘that is’. N.B: *Nota bene*, ‘Note well’. inter alia: ‘among other things’. QED: *quod erat demonstrandum*, meaning “end of proof”.

SeLo [2018t] quizzes so far...

P1: Wed. 29 Aug $[\sqrt{3}^{\sqrt{8}}]^{\sqrt{2}} = \lfloor \dots \dots \dots \rfloor$. $\log_{64}(16) = \lfloor \dots \dots \dots \rfloor$

P2: Fri. 31 Aug The four solutions to $[y-2] \cdot y \cdot [y+2] = -1/y$ are $y = \dots \dots \dots$

[Hint: Apply the Quadratic Formula to y^2 .]

P3: Wed. 05 Sep Write the truth-table for $B \Rightarrow [[\neg B] \Rightarrow C]$.

B	C	$\neg B$	$[\neg B] \Rightarrow C$	$B \Rightarrow [[\neg B] \Rightarrow C]$
F	F			
F	T			
T	F			
T	T			

P4: Fri.
14 Sep Write the free vars in each of these expressions.

$$\exists n \in \mathbb{N}: f(n) \subset \bigcup_{\ell=p-4}^{p+7} \underbrace{\{x \in \mathbb{Z} \mid \ell \cdot n \equiv_5 x^2\}}_{E1} \quad E3$$

$\underbrace{\quad\quad\quad}_{E2}$

$E3: \dots . E2: \dots . E1: \dots$

P5: Mon.
17 Sep

May lightning $\not\downarrow$ strike this table! (I.e, please fill in.)

n	r_n	q_n	s_n	t_n
0	100	—	1	0
1	23		0	1
2				
3				
4				
5				

$$\text{So } \text{GCD}(100, 23) = \dots = [\dots \cdot 100] + [\dots \cdot 23].$$

P6: Mon.
08 Oct LBolt gives $G \coloneqq \text{GCD}(23, 413) = \boxed{\dots}$. And
 $23S + 413T = G$, where $S = \boxed{\dots}$ & $T = \boxed{\dots}$
 are integers.

P7: Fri.
26 Oct Both \sim and \bowtie are equiv-relations on a set \mathbb{Z} .
Define binrels **I** and **U** on \mathbb{Z} as follows.

Define $\omega \mathbf{U} \lambda$ IFF Either $\omega \sim \lambda$ or $\omega \bowtie \lambda$ [or both].

Define $\omega \mathbf{I} \lambda$ IFF Both $\omega \sim \lambda$ and $\omega \bowtie \lambda$.

So “ \mathbf{U} is an equiv-relation” is:

So “**I** is an equiv-relation” is: **T** **F**

$\mathbf{A} := \{(6, 2), (2, 7), (5, 2), (7, 3), (7, 5), (3, 4), (1, 3), (1, 5)\}$ is a binrel on $[1..7]$, with transitive closure \mathbf{R} . Then:

2R2 is T F. 4R6 is T F. 7R7 is T F.

P8: An explicit bijection $\psi: \mathbb{Z} \leftrightarrow \mathbb{N}$ is this:

If $n \geq 0$, then $\psi(n) :=$.

If $n < 0$, then $\psi(n) \coloneqq$ _____.

P9: Mod. 26 Nov To the interval $J := (-\frac{\pi}{2}, \frac{\pi}{2})$, define a bijection
 $g: (0, 1) \leftrightarrow J$ by $g(x) :=$

.....

Using this g and a trigonometric fnc, define a bijection
 $h: (0, 1) \leftrightarrow \mathbb{R}$ by $h(x) :=$

.....

Last SeLo quiz of semester!