

Q3: Wed.
18 Jan

May lightning \notin strike this table! (I.e, please fill in.)

n	r_n	q_n	s_n	t_n
0	109	—	1	0
1	21		0	1
2				
3				
4				

$$\text{So } \text{GCD}(109, 21) = \left[\dots \right] = \left[\dots \cdot 109 \right] + \left[\dots \cdot 21 \right].$$

And $x = \left[\dots \right] \in (-50..50]$ solves congr. $21x \equiv_{109} 3$.

Q4: Fri.
20 Jan LBolt: $\text{GCD}(70, 30) = \left[\dots \cdot 70 \right] + \left[\dots \cdot 30 \right].$

So (LBolt again) $G := \text{GCD}(70, 30, 42) = \left[\dots \cdot 70 \right] + \left[\dots \cdot 30 \right] + \left[\dots \cdot 42 \right] = G$.

Q5: Fri.
03 Feb Coeff of $x^7 y^{15}$ in $[2x + y^3 + 5]^{20}$ is $\left[\dots \right]$.

[You may leave your answer as a product of posints, or you may multiply-out.]

Q6: Wed.
22 Feb Below, G and Ω are sets. Then

$$G^\Omega = \left\{ \left[\dots \right] \mid \left[\dots \right] \in \Omega \right\}.$$

Suppose R is a binrel from G to Ω . Then

$$\text{CoRange}(R) = \left\{ \left[\dots \right] \mid \left[\dots \right] \in \Omega \right\}.$$

Q7: Wed.
22 Feb With $f(x) := x^2$ and $g(x) := x + 3$,

$$\text{then } [f \triangleright g](5) = \left[\dots \right].$$

Circle those operators/relations which are chiral:

\neq \bullet \circ Max \div \leq $<$ \wedge

Q8: Fri.
24 Feb In Gale's game of CHOMP [whose $\mathbb{N} \times \mathbb{N} \times \mathbb{N}$ version is still unsolved], eating the Poison-Pill circle: Wins Loses

CHOMP, with best-play on a *finite* rectangular board, is a first-player win: T F

Q9: Fri.
03 Mar To the interval $J := (-\frac{\pi}{2}, \frac{\pi}{2})$, define a bijection $g: (0, 1) \leftrightarrow J$ by $g(x) :=$
.....

Using this g and a trigonometric fnc, define a bijection $h: (0, 1) \leftrightarrow \mathbb{R}$ by $h(x) :=$
.....

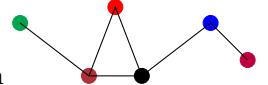
QA: Mon.
13 Mar A “Cantor’s-Hotel” type bijection

$f: (5, 6] \leftrightarrow (0, 1)$ is:
....., for each posint n ;

and $f(x) :=$
....., for each $x \in (5, 6] \setminus C$,
where $C :=$
.....

QB: Wed.
12 Apr

Bird with a broken wing: Graph



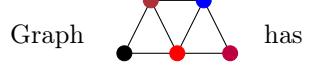
has Chromatic

poly $\mathcal{P}(x) =$
.....

[Can be done by inspection. Do not bother to multiply out.]

QC: Mon.
17 Apr

Trapezoid: Graph



has

poly $\mathcal{P}(x) =$
.....

[Edge-glue three copies of K_3 . Do not multiply out, but do write as a product of polynomials..]

Games Party!