

Q1: Wedn.
18 Jan May lightning \notin strike this table! (I.e, please fill in.)

n	r_n	q_n	s_n	t_n
0	100	—	1	0
1	23		0	1
2				
3				
4				
5				

So $\text{GCD}(100, 23) = \boxed{\dots} = [\dots \cdot 100] + [\dots \cdot 23]$.

And $x = \boxed{\dots} \in [0..100)$ solves congr. $23x \equiv_{100} 8$.

Q2: Wedn.
25 Jan Mod $K := 51$, the recipr. $\langle \frac{1}{20} \rangle_K = \boxed{\dots} \in [0..K]$.

[Hint: $\frac{1}{20} = \frac{1}{2} \cdot \frac{1}{10}$] So $x = \boxed{\dots} \in [0..K)$ solves $5 - 20x \equiv_K 2$.

Q3: Wed.
15 Feb $\mathcal{P}(\mathcal{P}(\#\text{suits in a deck}))$ has $\boxed{\dots}$ many elements.

Q4: Fri.
17 Feb Given sets with cardinalities $|B| = 7$ and $|E| = 5$, the number of non-constant fncs in B^E is $\boxed{\dots}$.

Q5: Wed.
22 Feb Binomial coefficient $\binom{7}{4} = \boxed{\dots} = \boxed{\dots}$.

Multinomial coefficient $\binom{9}{4, 2, 3} = \boxed{\dots} = \boxed{\dots}$.

[Note: Write your ans. ITOf factorials, then also write it as a single integer, or product of two, without factorials.]

Q6: Wed.
22 Feb Coeff of x^5y^{18} in $[x + 1 + 3y]^{30}$ is $\boxed{\dots}$.

[You may leave your answer as a product of posints, or you may multiply-out.]

Equality $\binom{74}{26, 25, 23} = \binom{74}{25} \cdot \binom{N}{K}$ suggests that $N = \boxed{\dots}$ and $K = \boxed{\dots}$.

Q7: Mon.
27 Feb Mimicking what we did in class: From the 987×200 game-board, cut-out (remove) the $(35, 150)$ -cell and one other cell at $P = (x, y)$. Circle those choices for P ,

$(150, 160), (14, 35), (66, 77), (195, 15), (123, 4)$

which, if removed, would leave a board that *definitely* cannot be domino-tiled.

ii Our invariant property for LBolt is that each row n satisfies:

Q8: Wed.
29 Feb Sequence $\vec{L} := (L_n)_{n=0}^{\infty}$ is defined by $L_0 := 0$, $L_1 := 1$, and $\forall n \in \mathbb{N}: L_{n+2} = 3L_{n+1} + L_n$. This implies $\forall k \in \mathbb{N}: L_k = [P \cdot \alpha^k + Q \cdot \beta^k]$, for real numbers $\alpha = \boxed{\dots} > \beta = \boxed{\dots}$, $P = \boxed{\dots}$, $Q = \boxed{\dots}$.

Q9: Mon.
12 Mar As a single numeral, $\boxed{\dots}$ is t.fol sum:

$$1 - 3 \cdot \binom{9}{1} + 9 \cdot \binom{9}{2} - 27 \cdot \binom{9}{3} + 81 \cdot \binom{9}{4} \mp \dots - 3^9 \cdot \binom{9}{9}.$$

QA: Fri.
15 Mar On \mathbb{Z}_+ , write $x \mathrel{\$} y$ IFF $xy < 0$. So $\$$ is Circle

Transitive: $\mathcal{T} \mathcal{F}$. **Symm.:** $\mathcal{T} \mathcal{F}$. **Reflex.:** $\mathcal{T} \mathcal{F}$.

On \mathbb{Z} , say that $x \nabla y$ IFF $x - y \leq 1$. Then ∇ is:

Trans.: $\mathcal{T} \mathcal{F}$. **Symm.:** $\mathcal{T} \mathcal{F}$. **Reflex.:** $\mathcal{T} \mathcal{F}$.
(Be careful on both parts!)

QB: Wed.
28 Mar On $\Omega := [1..29] \times [1..29]$, define binary-relation **C** by: $(x, \alpha) \mathbf{C} (y, \beta)$ IFF $x \cdot \beta \equiv_{30} y \cdot \alpha$. Statement “**Relation C is an equivalence relation**” is: $\mathcal{T} \mathcal{F}$

Both \sim and \bowtie are equiv-relations on a set Ω . Define binrels **I** and **U** on Ω as follows.

Define $\omega \mathbf{U} \lambda$ IFF Either $\omega \sim \lambda$ or $\omega \bowtie \lambda$ [or both].

Define $\omega \mathbf{I} \lambda$ IFF Both $\omega \sim \lambda$ and $\omega \bowtie \lambda$.

So “**U is an equiv-relation**” is: $\mathcal{T} \mathcal{F}$

So “**I is an equiv-relation**” is: $\mathcal{T} \mathcal{F}$

QC: Fri.
20 Apr Euler $\varphi(121000) = \boxed{\dots}$.

Express your answer as a product $p_1^{e_1} \cdot p_2^{e_2} \dots$ of primes to posint powers, with $p_1 < p_2 < \dots$

QD: Mon.
23 Apr a Suppose $y \in \text{QR}_N$, where N is oddprime.

You compute Bézout mults U and V st. $yU + NV = 1$. Then “**U is a mod- N square**” is: $\mathcal{A} \mathcal{T} \mathcal{A} \mathcal{F} \text{ Nei}$

b With $p := 323$, and $H := \frac{p-1}{2}$, note $66^H \equiv_p -2$.
Thus p is

.....

QE: Wed.
25 Apr? **No quiz!**