

Number Sets. Expression $k \in \mathbb{N}$ [read as “ k is an element of \mathbb{N} ” or “ k in \mathbb{N} ”] means that k is a natural number; a **natnum**. Expression $\mathbb{N} \ni k$ [read as “ \mathbb{N} owns k ”] is a synonym for $k \in \mathbb{N}$.

\mathbb{N} = natural numbers = $\{0, 1, 2, \dots\}$.

\mathbb{Z} = integers = $\{\dots, -2, -1, 0, 1, \dots\}$. For the set $\{1, 2, 3, \dots\}$ of positive integers, the **posints**, use \mathbb{Z}_+ . Use \mathbb{Z}_- for the negative integers, the **negints**.

\mathbb{Q} = rational numbers = $\{\frac{p}{q} \mid p \in \mathbb{Z} \text{ and } q \in \mathbb{Z}_+\}$. Use \mathbb{Q}_+ for the positive rationals and \mathbb{Q}_- for the negative rationals.

\mathbb{R} = reals. The **posreals** \mathbb{R}_+ and the **negreals** \mathbb{R}_- .

\mathbb{C} = complex numbers, also called the **complexes**.

For $\omega \in \mathbb{C}$, let “ $\omega > 5$ ” mean “ ω is real and $\omega > 5$ ”.

[Use the same convention for $\geq, <, \leq$, and also if 5 is replaced by any real number.]

Use $\bar{\mathbb{R}} = [-\infty, +\infty] := \{-\infty\} \cup \mathbb{R} \cup \{+\infty\}$, the **extended reals**.

An “**interval of integers**” $[b..c]$ means the intersection $[b, c] \cap \mathbb{Z}$; ditto for open and closed intervals. So $[e..2\pi] = \{3, 4, 5, 6\} = [3..6] = (2..6]$. We allow b and c to be $\pm\infty$; so $(-\infty..-1]$ is \mathbb{Z}_- . And $[-\infty..-1]$, is $\{-\infty\} \cup \mathbb{Z}_-$.

Floor function: $\lfloor \pi \rfloor = 3$, $\lfloor -\pi \rfloor = -4$.

Ceiling fnc: $\lceil \pi \rceil = 4$. Absolute value: $| -6 | = 6 = | 6 |$ and $| -5 + 2i | = \sqrt{29}$.

Mathematical objects. Seq: ‘sequence’. poly(s): ‘polynomial(s)’. irred: ‘irreducible’. Coeff: ‘coefficient’ and var(s): ‘variable(s)’ and parm(s): ‘parameter(s)’. Expr.: ‘expression’. Fnc: ‘function’ (so ratfnc: means rational function, a ratio of polynomials). trnfn: ‘transformation’. cty: ‘continuity’. cts: ‘continuous’. diff’able: ‘differentiable’. CoV: ‘Change-of-Variable’. Col: ‘Constant of Integration’. Lol: ‘Limit(s) of Integration’. RoC: ‘Radius of Convergence’.

Soln: ‘Solution’. Thm: ‘Theorem’. Prop’n: ‘Proposition’. CEX: ‘Counterexample’. eqn: ‘equation’. RhS: ‘RightHand side’ of an eqn or inequality. LhS: ‘lefthand side’. Sqrt or Sqroot: ‘square-root’, e.g, “the sqroot of 16 is 4”. Ptn: ‘partition’, but pt: ‘point’ as in “a fixed-pt of a map”.

Binop: ‘Binary operator’. Binrel: ‘Binary relation’.

FTC: ‘Fund. Thm of Calculus’. IVT: ‘intermediate-Value Thm’. MVT: ‘Mean-Value Thm’.

The **logarithm** function, defined for $x > 0$, is $\log(x) := \int_1^x \frac{dv}{v}$. Its inverse-fnc is **exp()**.

For $x > 0$, then, $\exp(\log(x)) = x = e^{\log(x)}$. For real t , naturally, $\log(\exp(t)) = t = \log(e^t)$.

PolyExp: ‘Polynomial-times-exponential’, e.g, $[3 + t^2] \cdot e^{4t}$. PolyExp-sum: ‘Sum of polyexps’. E.g, $f(t) := 3te^{2t} + [t^2] \cdot e^t$ is a polyexp-sum.

Phrases. WLOG: ‘Without loss of generality’. IFF: ‘if and only if’. TFAE: ‘The following are equivalent’. ITOf: ‘In Terms Of’. OTForm: ‘of the form’. FTSOC: ‘For the sake of contradiction’. And \nexists = “Contradiction”.

IST: ‘It Suffices To’, as in ISTShow, ISTExhibit.

Use w.r.t: ‘with respect to’ and s.t: ‘such that’.

Latin: e.g: *exempli gratia*, ‘for example’. i.e: *id est*, ‘that is’. N.B: *Nota bene*, ‘Note well’. inter alia: ‘among other things’. QED: *quod erat demonstrandum*, meaning “end of proof”.

Sequence notation. A **sequence** \vec{x} abbreviates $(x_0, x_1, x_2, x_3, \dots)$. For a set Ω , expression “ $\vec{x} \subset \Omega$ ” means $[\forall n: x_n \in \Omega]$. Use **Tail_N(\vec{x})** for the subsequence

$$(x_N, x_{N+1}, x_{N+2}, \dots)$$

of \vec{x} . Given a fnc $f: \Omega \rightarrow \Lambda$ and an Ω -sequence \vec{x} , let $f(\vec{x})$ be the Λ -sequence $(f(x_1), f(x_2), f(x_3), \dots)$.

Suppose Ω has an addition and multiplication. For Ω -seqs \vec{x} and \vec{y} , then, let $\vec{x} + \vec{y}$ be the sequence whose n^{th} member is $x_n + y_n$. I.e

$$\vec{x} + \vec{y} = [n \mapsto [x_n + y_n]].$$

Similarly, $\vec{x} \cdot \vec{y}$ denotes seq $[n \mapsto [x_n \cdot y_n]]$.

Plex notation. Let SCC mean “positively oriented simple-closed-contour”. For a SCC C , have $\overset{\circ}{C}$ be the (open) region C encloses, and let $\overset{\circ}{C}$ mean C together with $\overset{\circ}{C}$. So $\overset{\circ}{C}$ is $C \sqcup \overset{\circ}{C}$; it is automatically simply-connected and is a closed bounded set.

P3: Wed. 13 Oct [Below, “ Log ” is the P.V. of \mathbb{C} -logarithm, and $z, w \in \mathbb{C}$.]

If $\text{Re}(z) < 0$ then $\text{Log}(z^2) = 2\text{Log}(z)$. AT AF Nei

If $\text{Re}(z) > 1$ then $\text{Log}(z^3) = 3\text{Log}(z)$. AT AF Nei

If $\text{Re}(z) = 0$ and $\text{Im}(z) > 2$
then $\text{Log}(\exp(z)) = z$. AT AF Nei

If $\text{Re}(z) > 0$ and $\text{Re}(w) > 0$
then $\text{Log}(z \cdot w) = \text{Log}(z) + \text{Log}(w)$. AT AF Nei

So $\text{Log}([1 + i]^{13}) = 13 \ln(\sqrt{2}) + y\mathbf{i}$, where $y = \dots$.

Plex [2021t] quizzes so far...

P1: Wed. 01 Sep Blanks $\in \mathbb{R}$. So $\frac{1}{2+3i} = \dots + i \cdot \begin{bmatrix} \dots \\ \dots \end{bmatrix}$.
Thus $\frac{5-i}{2+3i} = \dots + i \cdot \begin{bmatrix} \dots \\ \dots \end{bmatrix}$.

P2: Mon. 11 Oct With $\alpha := [3i]^3$ and $x + iy := \text{Log}(\alpha)$, then
 $x = \dots$ and $y = \dots$.

P4: Fri.
15 Oct With L the line-segment contour from $p := 4$ to $q := 7+i$, compute $J := \int_L \bar{z} dz$, showing the parametrization you used and resulting definite integral.

P5: Fri.
22 Oct Let $C := \text{Sph}_3(i)$, a radius 3 circle centered at i . Integral

$$\oint_C \frac{\cos(z^2)}{1-3z} dz = \text{_____}.$$

[Hint: Rewrite, then use the Cauchy Integral Formula.]

P6: Mon.
25 Oct Let \mathbf{R} be the pos-oriented rectangle with corners $2 \pm \mathbf{i}$ and $-9 \pm \mathbf{i}$.

Then $\oint_{\mathbf{R}} \frac{\exp(2z)}{z^2 - 9} dz = \text{_____}$.

P: Wed.
27 Oct *Class-W, in-class exam. Bring lots of paper, and perhaps colored pencils for drawing pictures.*

Let $\mathbf{C} := \text{Sph}_3(\mathbf{i})$, a radius 3 circle centered at \mathbf{i} . Integral

$\oint_{\mathbf{C}} \frac{\cos(z^2)}{3 - z} dz = \text{_____}$.

P7: Fri.
29 Oct Let $f(x+iy) := 4x^3 + iy^3$. Let $\mathbf{D}, \mathbf{H}, \mathbf{C} \subset \mathbb{C}$ be the sets where f is, respectively: **Differentiable**, **Holomorphic**, **has Continuous 1st-partials**. Then

$$\mathbf{D} = \dots ;$$

$$\mathbf{H} = \dots ;$$

$$\mathbf{C} = \dots .$$

[You may use: *Set-builder notation. List pts between braces. Union & intersection symbols. Sets $\mathbb{C}, \mathbb{R}, \emptyset$.*]

P8: Fri.
05 Nov Compute $J := \oint_{\mathbf{C}} \frac{\cos(2z)}{[z-4][z-100]} dz$, where $\mathbf{C} := \text{Sph}_9(\mathbf{i})$, the radius-9 circle centered at \mathbf{i} .

PBonus: Mon.
08 Nov Our *W-Bonus* was due at the Beginning of Class, hopefully nicely typeset and well-written.

P9: Wed.
10 Nov Prof. K thinks the flu vaccine is *Good Idea, even* if PUBLIX offers no gift-card. Circle: Yes True

The visual representation of \mathbb{C} is sometimes called “the ? plane”, where ? is Circle: Unreal Higher
 Snakes-on-a Argand Krypton Rayon Xenon
 Euler Goursat Liouville No-need-to-x y-com Air Sea
 De Rain-in-Spain-stays-mainly-on-the .

PA: Fri.
12 Nov Let $f(z) := z^4 \exp(2/z)$.

Then $\text{Res}(f, 0) =$ _____.

[Hint: Write the PS for e^w , then plug in $2/z$ for w . Multiply the resulting Laurent Series by z^4 . You may use the factorial symbol in expressing your answer.]

PX: Wed.
17 Nov **Class-X**, our third in-class exam.

For a LOR (letter-of-recommendation), Prof. K requires two courses, or a Special Topics or graduate course Circle:

Yes

True

Darn tootin'!

PB: Fri.
19 Nov Let $f(z) := z^4 + 13z^2 + 36$. Reciprocal

$H(z) := 1/f(z)$ has, in the upper half-plane, two poles \mathbf{p} and \mathbf{q} , where \mathbf{p} lies closer to the origin than \mathbf{q} .

So $\text{Res}(H, \mathbf{p}) = \dots$ and $\text{Res}(H, \mathbf{q}) = \dots$.

Our D-contour technique applies to H .

$$\text{Thus } J := \int_{-\infty}^{+\infty} \frac{1}{z^4 + 13z^2 + 36} \, dx = \boxed{\dots}$$

PC: Mon.
22 Nov STMT: Most folks like Thanksgiving Break.
(Circle)

T F What? We don't have class?

A function holomorphic on open $\text{Bal}_2(0)$

with poles at $\pm 2i$

and at ± 2 is $h(z) :=$

Prof. King believes that writing in complete, coherent sentences is crucial in communicating Mathematics, improves posture, and whitens teeth. Circle one:

PThanksgiving: Wed-Sat.
24-27 Nov No classes, so . . . *Lots of time
to post solutions to our Archive!*

True! Yes! *wH'at S a?sEnTENcE*

PD: Mon.
29 Nov The IOP (Individual Optional Project) must be carefully TYPESET. It is due by **2PM** on **Thursday, 07Dec2023**, slid *completely* under my office door, **Little Hall 402** (northeast corner of top floor) **Circle:** Yes Cool! **Thanks**

On annulus $\{2 < |z| < \infty\}$, fnc $f(z) := 1/[z - 2i]$ has Laurent series $\sum_{n=-\infty}^{\infty} B_n z^n$, where $B_{-4} = \boxed{\dots}$, $B_{-3} = \boxed{\dots}$, and $B_2 = \boxed{\dots}$.

PE: Wed.
01 Dec Residue $\text{Res}_{z=0}(z^6 \cdot \sin(\frac{1}{3z})) = \dots$.

PF: Wed.
08 Dec Prof. King thinks that submitting a ROBERT LONG PRIZE ESSAY [typically 2 prizes, \$600 total] is a *really good idea*. A ten-page essay is fine. Date for the emailed-PDF is **Mon., 25 Mar., 2024**.

Circle: Yes True Résumé material!