

Plex

MAA4402

Quizzes P

Tuesday 03Jan2017

MAA5404

Number Sets. Expression $k \in \mathbb{N}$ [read as “ k is an element of \mathbb{N} ” or “ k in \mathbb{N} ”] means that k is a natural number; a **natnum**. Expression $\mathbb{N} \ni k$ [read as “ \mathbb{N} owns k ”] is a synonym for $k \in \mathbb{N}$.

\mathbb{N} = natural numbers = $\{0, 1, 2, \dots\}$.

\mathbb{Z} = integers = $\{\dots, -2, -1, 0, 1, \dots\}$. For the set $\{1, 2, 3, \dots\}$ of positive integers, the **posints**, use \mathbb{Z}_+ . Use \mathbb{Z}_- for the negative integers, the **negints**.

\mathbb{Q} = rational numbers = $\{\frac{p}{q} \mid p \in \mathbb{Z} \text{ and } q \in \mathbb{Z}_+\}$. Use \mathbb{Q}_+ for the positive rationals and \mathbb{Q}_- for the negative rationals.

\mathbb{R} = reals. The **posreals** \mathbb{R}_+ and the **negreals** \mathbb{R}_- .

\mathbb{C} = complex numbers, also called the **complexes**.

For $\omega \in \mathbb{C}$, let “ $\omega > 5$ ” mean “ ω is real and $\omega > 5$ ”.

[Use the same convention for $\geq, <, \leq$, and also if 5 is replaced by any real number.]

Use $\bar{\mathbb{R}} = [-\infty, +\infty] := \{-\infty\} \cup \mathbb{R} \cup \{+\infty\}$, the **extended reals**.

An “**interval of integers**” $[b..c]$ means the intersection $[b, c] \cap \mathbb{Z}$; ditto for open and closed intervals. So $[e..2\pi] = \{3, 4, 5, 6\} = [3..6] = (2..6]$. We allow b and c to be $\pm\infty$; so $(-\infty..-1]$ is \mathbb{Z}_- . And $[-\infty..-1]$, is $\{-\infty\} \cup \mathbb{Z}_-$.

Floor function: $\lfloor \pi \rfloor = 3$, $\lfloor -\pi \rfloor = -4$. Ceiling fnc: $\lceil \pi \rceil = 4$. Absolute value: $| -6 | = 6 = | 6 |$ and $| -5 + 2i | = \sqrt{29}$.

Mathematical objects. Seq: ‘sequence’. poly(s): ‘**polynomial(s)**’. irred: ‘**irreducible**’. Coeff: ‘**coefficient**’ and var(s): ‘**variable(s)**’ and parm(s): ‘**parameter(s)**’. Expr.: ‘**expression**’. Fnc: ‘**function**’ (so ratfnc: means rational function, a ratio of polynomials). trnfn: ‘**transformation**’. cty: ‘**continuity**’. cts: ‘**continuous**’. diff’able: ‘**differentiable**’. CoV: ‘**Change-of-Variable**’. Col: ‘**Constant of Integration**’. Lol: ‘**Limit(s) of Integration**’. RoC: ‘**Radius of Convergence**’.

Soln: ‘**Solution**’. Thm: ‘**Theorem**’. Prop’n: ‘**Proposition**’. CEX: ‘**Counterexample**’. eqn: ‘**equation**’. RhS: ‘**RightHand side**’ of an eqn or inequality. LhS: ‘**lefthand side**’. Sqrt or Sqroot: ‘**square-root**’, e.g, “the sqroot of 16 is 4”. Ptn: ‘**partition**’, but pt: ‘**point**’ as in “a fixed-pt of a map”.

Binop: ‘**Binary operator**’. Binrel: ‘**Binary relation**’.

FTC: ‘*Fund. Thm of Calculus*’. IVT: ‘*intermediate-Value Thm*’. MVT: ‘*Mean-Value Thm*’.

The **logarithm** function, defined for $x > 0$, is $\log(x) := \int_1^x \frac{dv}{v}$. Its inverse-fnc is **exp()**.

For $x > 0$, then, $\exp(\log(x)) = x = e^{\log(x)}$. For real t , naturally, $\log(\exp(t)) = t = \log(e^t)$.

PolyExp: ‘*Polynomial-times-exponential*’, e.g, $[3 + t^2] \cdot e^{4t}$. PolyExp-sum: ‘*Sum of polyexps*’. E.g, $f(t) := 3te^{2t} + [t^2] \cdot e^t$ is a polyexp-sum.

Phrases. WLOG: ‘*Without loss of generality*’. IFF: ‘*if and only if*’. TFAE: ‘*The following are equivalent*’. ITOf: ‘*In Terms Of*’. OTForm: ‘*of the form*’. FTSOC: ‘*For the sake of contradiction*’. And \nexists = “*Contradiction*”.

IST: ‘*It Suffices To*’, as in ISTShow, ISTExhibit.

Use w.r.t: ‘*with respect to*’ and s.t: ‘*such that*’.

Latin: e.g: *exempli gratia*, ‘*for example*’. i.e: *id est*, ‘*that is*’. N.B: *Nota bene*, ‘*Note well*’. inter alia: ‘*among other things*’. QED: *quod erat demonstrandum*, meaning “end of proof”.

Plex notation. Let **SCC** mean “positively oriented simple-closed-contour”. For a **SCC** C , have $\overset{\circ}{C}$ be the (open) region C encloses, and let \widehat{C} mean C together with $\overset{\circ}{C}$. So \widehat{C} is $C \sqcup \overset{\circ}{C}$; it is automatically simply-connected and is a closed bounded set.

Plex [2017g] quizzes so far...

P1: Wed. 11 Jan complex-recip.tex Blanks $\in \mathbb{R}$. So $\frac{1}{2+3i} = \underline{\quad} + i \cdot \underline{\quad}$.
Thus $\frac{5-i}{2+3i} = \underline{\quad} + i \cdot \underline{\quad}$.

c.Im-of-z.tex For z complex, $\text{Im}(z) = \text{Formula}(z, \bar{z}) = \underline{\quad}$.

P2: Wed. 18 Jan complex-sqroot2.tex Suppose $[C + Di]^2 = -4i$, where $C, D \in \mathbb{R}$. Then $C = \underline{\quad} \dots$ and $D = \underline{\quad} \dots$.

MS-defn-hints.tex On a set Ω , a **metric** is a map $d: \Omega \rightarrow [0, \infty)$ such that $\forall w, x, y, z \in \Omega$:

MS1:

 $\boxed{\dots}$

MS2:

 $\boxed{\dots}$

MS3:

 $\boxed{\dots}$

P3: Fri. 03 Feb [complex-recip.tex](#) Blanks $\in \mathbb{R}$. So $\frac{1}{4-3i} = \boxed{\dots} + i \cdot \boxed{\dots}$.

P4: Fri. 17 Feb [laplacian.tex](#) Fnc $u(x, y) := \cos(y \cdot x) - 7x$

maps $\mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}$. Its Laplacianis $[\Delta(u)](x, y) = \boxed{\dots}$.There exists function $v: \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}$ such that $f(x + iy) := u(x, y) + iv(x, y)$ is holomorphic. $T \neq F$

PBonus: Fri. 03 Mar [complex.int-contour-deriv2.tex](#) Let C be SCC $\text{Sph}_7(0)$, a circle of radius 7. Then

$\oint_C \frac{\cos(2z)}{[z - 5]^4} dz = \boxed{\dots}$

[Ans may be written as a product, using powers and factorials.]

P5: Mon. 13 Mar [complex.PV-exp.tex](#) Writing $x + iy = \boxed{\dots}$

[P.V of $i^{[1+i]}$] with $x, y \in \mathbb{R}$, then $x = \boxed{\dots}$ and $y = \boxed{\dots}$.

P6: Fri. 14 Apr [complex.Rouche0.miss-hypothesis.tex](#) For a SCC C , suppose fncs analytic on \widehat{C} satisfy that $|f(z)| \geq |g(z)|$ for every $z \in C$. If $f+g$ has fewer zeros in \widehat{C} than f does, then there must exist a point $w \in C$ such that $\boxed{\dots}$.

P7: Mon. 17 Apr [complex.Rouche2.tex](#) Let $f(z) := z^5 + 3z^4 + 6$, and $C_r := \text{Sph}_r(0)$. Our f

has $\boxed{\dots}$ zeros inside C_1 , and $\boxed{\dots}$ zeros inside C_2 .

Games Party!