

Q1: Fri. 3 Sep Let E be the set $\left\{ 5 + \left[(-1)^n \cdot \frac{3n-1}{n} \right] \right\}_{n \in \mathbb{Z}_+}$. Then $\sup_{\mathbb{R}}(E) = \dots$ and $\inf_{\mathbb{R}}(E) = \dots$.

Q2: Wed. 8 Sep A **TOS** [totally ordered set] (Ω, \prec) satisfies axioms [Rather than use words such as "symmetric", write each axiom precisely, using quantification]: Imagine 3 blank lines.

A TOS (Ω, \prec) has the GLBP IFF [Remember Qfn!]: Imagine 3 blank lines.

Q3: Mon. 29 Nov Please write **DNE** in a blank if the described object does not exist or if the indicated operation cannot be performed.

a The MacSe of $\frac{1}{1-5x^3}$ has RoC= Imagine 3 blank lines.
MacSe(x)= Imagine 3 blank lines.

Write the first 5 non-zero terms,
e.g. $8x^3 + \frac{1}{8}x^6 + \frac{3}{2}x^8 - x^{12} - 7x^{15} + \dots$

b $\sum_{n=0}^{\infty} \left[\frac{4-3i}{5} \right]^n = \dots + [i \cdot \dots]$.

Q4: Fri. 21 Jan **i** A TS Ω is **connected** if ...: [Define all terms you use.] Imagine 5 blank lines.

ii In TS Ω we have a point $p \in \Omega$ and sets $\{E_n\}_{n=1}^{\infty}$. For each n , our E_n owns p , and is connected. Prove that $X := \bigcup_{n=1}^{\infty} E_n$ is connected.

Q5: Fri. 28 Jan **Am I in class today?**
circle one **"Yes!"** **"Of course!"**

Q6: Fri. 04 Feb **Am I in class today?**
circle one **"Yes!"** **"Of course!"**

Q7: Wed. 09 Feb **a** OYOSOP, state the Cauchy Mean-Value Theorem on the closed interval $J := [4, 7]$.

b OYOSOP, state Liouville's Thm: Suppose $\alpha \in \mathbb{R}$ is an algebraic number of degree $\mathfrak{D} := \text{Deg}(\alpha) \stackrel{\text{note}}{\geq} 2$. Then ...

Q8: Mon. 14 Mar $S := \mathbb{D} \cap (0, 1)$ is circle $\mathcal{F}_{\sigma} \mathcal{G}_{\delta}$, because circle an operator

$S = \bigcap_{n=1}^{\infty} \bigcup E_n$, where E_n is

Q9: Wed. 16 Mar For $n = 2, 3, 4, \dots$, let $g_n: [0, 1] \rightarrow \mathbb{R}$ be the P.L fnc with these cutpoint and height tuples:

$$\vec{p} := (0, 1/n^3, 1/n^2, 1) \quad \text{and} \\ \vec{h} := (0, n, 0, 0).$$

Circle those senses in which seq $(g_n)_{n=1}^{\infty}$ converges:
pointwise $\|\cdot\|_3$ $\|\cdot\|_2$ $\|\cdot\|_1$ $\|\cdot\|_{\sup}$

Q10: Fri. 18 Mar? Create world some peace.

§A Potential quiz/exam problems

Some of these may appear on quizzes/exams; naturally, with different data. Please write **DNE** in a blank if the described object does not exist or if the indicated operation cannot be performed.

I1 On $J := [3, 7]$, we have partition P with cutpoints $p_0 = 3 < p_1 < \dots < p_9 = 7$. For fnc $g: J \rightarrow \mathbb{R}$, the defn of $\text{Osc}^g(P)$ is: Imagine 5 blank lines.

I2 Interval $J := [-3, \pi]$ has ptn P with cutpoints $\{-3, 1, \pi\}$. Define $\alpha := [x \mapsto \sqrt[3]{x} \cdot 1_{\mathbb{Q}}(x)]$. Then

$$\text{Osc}^{\alpha}(P) = \dots + \dots$$

Equipping P with sample points $\{-2, \pi/2\}$, now $\text{RS}^{\alpha}(P) = \dots$.

I3 Prove: Suppose $f \in \text{RI}(J \rightarrow \mathbb{R})$ and $L > 0$, where $L := [\inf_{x \in J} |f(x)|]$. Prove that $1/f$ is integrable.