

Number Sets. An expression such as $k \in \mathbb{N}$ (read as “ k is an element of \mathbb{N} ” or “ k in \mathbb{N} ”) means that k is a natural number; a **natnum**.

\mathbb{N} = natural numbers = $\{0, 1, 2, \dots\}$.

\mathbb{Z} = integers = $\{\dots, -2, -1, 0, 1, \dots\}$. For the set $\{1, 2, 3, \dots\}$ of positive integers, the **posints**, use \mathbb{Z}_+ . Use \mathbb{Z}_- for the negative integers, the **negints**.

\mathbb{Q} = rational numbers = $\{\frac{p}{q} \mid p \in \mathbb{Z} \text{ and } q \in \mathbb{Z}_+\}$. Use \mathbb{Q}_+ for the positive **ratnums** and \mathbb{Q}_- for the negative ratnums.

\mathbb{R} = reals. The **posreals** \mathbb{R}_+ and the **negreals** \mathbb{R}_- .

\mathbb{C} = complex numbers, also called the **complexes**.

An “**interval of integers**” $[b..c]$ means the intersection $[b, c] \cap \mathbb{Z}$; ditto for open and closed intervals. So $[\epsilon..2\pi] = \{3, 4, 5, 6\} = [3..6] = (2..6]$. We allow b and c to be $\pm\infty$; so $(-\infty..-1]$ is \mathbb{Z}_- .

Floor function: $\lfloor \pi \rfloor = 3$ and $\lfloor -\pi \rfloor = -4$. Ceiling: $\lceil \pi \rceil = 4$. Abs.value: $|-6| = 6 = |6|$ and $|-5 + 2i| = \sqrt{29}$.

Mathematical objects. Seq: ‘sequence’. poly(s): ‘polynomial(s)’. irred: ‘irreducible’. Coeff: ‘coefficient’ and var(s): ‘variable(s)’ and parm(s): ‘parameter(s)’. Expr.: ‘expression’. Col: ‘Constant of Integration’. Lol: ‘Limit(s) of Integration’.

Fnc: ‘function’ (so ratfnc: means rational function, a ratio of polynomials). cty: ‘continuity’. cts: ‘continuous’. diff’able: ‘differentiable’.

Soln: ‘Solution’. Thm: ‘Theorem’. Prop’n: ‘Proposition’. CEX: ‘Counterexample’. eqn: ‘equation’. RhS: ‘RightHand Side’ of an eqn or inequality. LhS: ‘left-hand side’. Sqrt or Sqroot: ‘square-root’, e.g., “the sqroot of 16 is 4”. Ptn: ‘partition’, but pt: ‘point’, as in “a fixed-pt of a map”.

FTC: ‘Fund. Thm of Calculus’. IVT: ‘intermediate-Value Thm’. MVT: ‘Mean-Value Thm’. CoV: ‘Change-of-Variable’.

Phrases. WLOG: ‘Without loss of generality’. TFAE: ‘The following are equivalent’. ITOf: ‘In Terms Of’. OTForm: ‘of the form’. FTSOC: ‘For the sake of contradiction’. Use iff: ‘if and only if’.

IST: ‘It Suffices to’ as in ISTShow, ISTExhibit.

Use w.r.t: ‘with respect to’ and s.t: ‘such that’.

Latin: e.g: *exempli gratia*, ‘for example’. i.e: *id est*, ‘that is’. QED: *quod erat demonstrandum*, meaning “end of proof”.

LinA [2016g] quizzes so far...

Q1: Wed. 20 Jan Consider $h: [1, 10] \rightarrow \mathbb{R}$ by $h(x) := 2 \sin(x)$.

Then

$\text{Supp}(h) =$

.....

Q2: Tue. 26 Jan A system of 3 linear equations in unknowns x_1, \dots, x_5 reduces to the augmented matrix

$$\left[\begin{array}{ccccc|c} 1 & 1 & 0 & 0 & 1 & 12 \\ 0 & 0 & 1 & 0 & -8 & 34 \\ 0 & 0 & 0 & 1 & 5 & -56 \end{array} \right]$$
, which is in RREF. Please circle each pivot entry.

OYOP, describe the general solution in this form,

$$\left[\begin{array}{c} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{array} \right] = \left[\begin{array}{c} ? \\ ? \\ ? \\ ? \\ ? \end{array} \right] + \alpha \left[\begin{array}{c} ? \\ ? \\ ? \\ ? \\ ? \end{array} \right] + \beta \left[\begin{array}{c} ? \\ ? \\ ? \\ ? \\ ? \end{array} \right] + \gamma \left[\begin{array}{c} ? \\ ? \\ ? \\ ? \\ ? \end{array} \right] + \dots$$

where each $\alpha, \beta, \gamma, \delta, \dots$ is a free variable (either x_1 or... or x_5), and each column vector has specific numbers in it.

$\text{Dim}(\text{SolnFlat}) =$

Q3: Wed. 27 Jan Let $B := \begin{bmatrix} 1 & 2 & 1 & 0 & 1 \\ 3 & 6 & 0 & -3 & 0 \\ 2 & 4 & -1 & -3 & -1 \\ 4 & 8 & 1 & -3 & 0 \end{bmatrix}$. Then $R :=$

$RREF(B)$ is [show no work, here]

$$R = \left[\begin{array}{ccccc} | & | & | & | & | \\ \hline | & | & | & | & | \\ | & | & | & | & | \\ | & | & | & | & | \end{array} \right].$$

Q4: Mon. 01 Feb $M := \begin{bmatrix} 70 & 7 \\ 1 & 2 \end{bmatrix}$. Compute M^{-1} over these three fields. [Write your \mathbb{Z}_p answers using symmetric residues.]

Over \mathbb{Z}_5 : $M^{-1} =$ Over \mathbb{Z}_7 : $M^{-1} =$

Over \mathbb{Q} : $M^{-1} =$

Q5: Wed. 10 Feb Suppose $\{\mathbf{v}, \mathbf{w}, \mathbf{x}\}$ is a basis of $\mathbf{V} := \mathbb{R}^3$, a \mathbb{R} -VS.

Then $\{\mathbf{v} + \mathbf{x}, \mathbf{w}, \mathbf{x}\}$ is a \mathbf{V} -basis.

AT AF Nei

Then $\{2\mathbf{v}, 3\mathbf{w}, 4\mathbf{x}\}$ is a \mathbf{V} -basis.

AT AF Nei

Q6: Tue. 16 Feb We discussed describing Det in terms of permutations, and defined the sign of a permutation. I then put the following two permutations on the board, pictorially, as non-attacking rook placements.

Perm $\pi := [2, 3, 5, 4, 1]$ has $\text{Sgn}(\pi) =$ +1 -1.

Perm $\nu := [5, 2, 6, 4, 1, 3]$ has $\text{Sgn}(\nu) =$ +1 -1.

Q7: Fri. 26 Feb Determinant of $\mathbf{M} := \begin{bmatrix} 3 & 4 \\ 7 & 5 \end{bmatrix}$ is The

characteristic-poly of \mathbf{M} is $\varphi_{\mathbf{M}}(x) = x^2 + Bx + C$, where $B =$ and $C =$

Q8: Mon. 07 Mar Matrix $\mathbf{M} := \begin{bmatrix} 2 & 0 & 1 \\ 5 & 0 & -3 \\ 6 & 7 & 8 \end{bmatrix}$

has $\text{Trace}(\mathbf{M}) =$ and $\text{Det}(\mathbf{M}) =$

Q9: Wed. 09 Mar $\mu =$ $\leq \nu =$

are the eigenvals of $\mathbf{G} := \begin{bmatrix} -5 & -4 \\ 8 & 7 \end{bmatrix}$. Let $\mathbf{D} := \begin{bmatrix} \mu & 0 \\ 0 & \nu \end{bmatrix}$. Then $\mathbf{D} = \mathbf{U}^{-1} \mathbf{G} \mathbf{U}$ where the 2×2 integer matrix \mathbf{U} is

$$\mathbf{U} = \left[\begin{array}{c|c} & \\ \hline & \end{array} \right].$$

QA: Fri. 11 Mar $\mu =$ $\leq \nu =$

are the eigenvals of $\mathbf{G} := \begin{bmatrix} 8 & -12 \\ 9 & -13 \end{bmatrix}$. Let $\mathbf{D} := \begin{bmatrix} \mu & 0 \\ 0 & \nu \end{bmatrix}$. Then $\mathbf{D} = \mathbf{U}^{-1} \mathbf{G} \mathbf{U}$ where the 2×2 integer matrix \mathbf{U} is

$$\mathbf{U} = \left[\begin{array}{c|c} & \\ \hline & \end{array} \right].$$

QB: Tue. 15 Mar Let \mathcal{L} be this list of 8 symbols: $\mathbf{A}, \mathbf{G}, \mathbf{R}, \mathbf{T}, \mathbf{U}, \alpha, \beta, \omega$.

In matrix-eqn $\begin{bmatrix} \mathbf{R} & \mathbf{U} & \mathbf{G} \\ 0 & \mathbf{A} & 0 \\ 0 & 0 & \mathbf{T} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} \alpha \\ \beta \\ \omega \end{bmatrix}$, Cramer's Rule

writes x_1 as ratio $f(\mathcal{L})/q(\mathcal{L})$ of polynomials

$$f(\mathcal{L}) =$$

$$\text{.....}$$

$$\text{and } q(\mathcal{L}) =$$

$$\text{.....}$$

QC: Fri. 18 Mar Solve the the World's Problems.