

Number Sets. An expression such as $k \in \mathbb{N}$ (read as “ k is an element of \mathbb{N} ” or “ k in \mathbb{N} ”) means that k is a natural number; a **natnum**.

\mathbb{N} = natural numbers = $\{0, 1, 2, \dots\}$.

\mathbb{Z} = integers = $\{\dots, -2, -1, 0, 1, \dots\}$. For the set $\{1, 2, 3, \dots\}$ of positive integers, the **posints**, use \mathbb{Z}_+ . Use \mathbb{Z}_- for the negative integers, the **negints**.

\mathbb{Q} = rational numbers = $\{\frac{p}{q} \mid p \in \mathbb{Z} \text{ and } q \in \mathbb{Z}_+\}$. Use \mathbb{Q}_+ for the positive **ratnums** and \mathbb{Q}_- for the negative ratnums.

\mathbb{R} = reals. The **posreals** \mathbb{R}_+ and the **negreals** \mathbb{R}_- .

\mathbb{C} = complex numbers, also called the **complexes**.

An “**interval of integers**” $[b .. c]$ means the intersection $[b, c] \cap \mathbb{Z}$; ditto for open and closed intervals. So $[e .. 2\pi] = \{3, 4, 5, 6\} = [3 .. 6] = (2 .. 6]$. We allow b and c to be $\pm\infty$; so $(-\infty .. -1]$ is \mathbb{Z}_- .

Mathematical objects. Seq: ‘sequence’. poly(s): ‘polynomial(s)’. irred: ‘irreducible’. Coeff: ‘coefficient’ and var(s): ‘variable(s)’ and parm(s): ‘parameter(s)’. Expr.: ‘expression’. Col: ‘Constant of Integration’. Lol: ‘Limit(s) of Integration’.

Fnc: ‘function’ (so ratfnc: means rational function, a ratio of polynomials). cty: ‘continuity’. cts: ‘continuous’. diff’able: ‘differentiable’.

Soln: ‘Solution’. Thm: ‘Theorem’. Prop’n: ‘Proposition’. CEX: ‘Counterexample’. eqn: ‘equation’. RhS: ‘RightHand Side’ of an eqn or inequality. LhS: ‘lefthand side’. Sqrt or Sqroot: ‘square-root’, e.g., “the sqroot of 16 is 4”. Ptn: ‘partition’, but pt: ‘point’, as in “a fixed-pt of a map”.

FTC: ‘Fund. Thm of Calculus’. IVT: ‘intermediate-Value Thm’. MVT: ‘Mean-Value Thm’. CoV: ‘Change-of-Variable’.

Phrases. WLOG: ‘Without loss of generality’. TFAE: ‘The following are equivalent’. ITOf: ‘In Terms Of’. OTForm: ‘of the form’. FTSOC: ‘For the sake of contradiction’. Use iff: ‘if and only if’.

IST: ‘It Suffices to’ as in ISTShow, ISTExhibit.

Use w.r.t: ‘with respect to’ and s.t: ‘such that’.

Latin: e.g: *exempli gratia*, ‘for example’. i.e: *id est*, ‘that is’. QED: *quod erat demonstrandum*, meaning “end of proof”.

LinA quizzes so far...

Q0: Mon.
31,Aug The **slope** of line $3[y - 5] = 2[x - 2]$ is $\underline{\dots}$.

Point $(-4, y)$ lies on this line, where $y = \underline{\dots}$.

Let $y = f(x) := [5 + \sqrt[3]{x}]/2$. Its inverse-function is $f^{-1}(y) = \underline{\dots}$.

Q1: Wed.
09 Sep **Henceforth**, let **AT** mean “Always True”, **AF** mean “Always False” and **Nei** mean “Neither always true nor always false”. Below, $\mathbf{u}, \mathbf{v}, \mathbf{w}$ repr. *distinct*, non-zero vectors in \mathbb{R}^4 , a \mathbb{R} -VS. Please the correct response:

y1 If $\mathbf{w} \in \text{Span}\{\mathbf{u}, \mathbf{v}\}$ then $\{\mathbf{u}, \mathbf{v}, \mathbf{w}\}$ is linearly independent. **AT AF Nei**

y2 If $\mathbf{w} \notin \text{Span}\{\mathbf{u}, \mathbf{v}\}$ then $\{\mathbf{u}, \mathbf{v}, \mathbf{w}\}$ is linearly independent. **AT AF Nei**

y3 Collection $\{\mathbf{0}, \mathbf{w}\}$ is linearly-indep. **AT AF Nei**

y4 $\text{Span}\{\mathbf{u}, \mathbf{v}, \mathbf{w}, \mathbf{u} + 2\mathbf{v} + 3\mathbf{w}\}$ is all of \mathbb{R}^4 . **AT AF Nei**

y5 If none of $\mathbf{u}, \mathbf{v}, \mathbf{w}$ is a multiple of the other vectors, then $\{\mathbf{u}, \mathbf{v}, \mathbf{w}\}$ is linearly independent. **AT AF Nei**

Q2: Fri.
18 Sep A system of 3 linear equations in unknowns x_1, \dots, x_5 reduces to the augmented matrix

$$\left[\begin{array}{ccccc|c} 1 & 1 & 0 & 0 & 1 & 12 \\ 0 & 0 & 1 & 0 & -8 & 34 \\ 0 & 0 & 0 & 1 & 5 & -56 \end{array} \right]$$
 which is in RREF. Please each pivot entry.

OYOP, describe the general solution in this form,

$$\left[\begin{array}{c} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{array} \right] = \left[\begin{array}{c} ? \\ ? \\ ? \\ ? \\ ? \end{array} \right] + \alpha \left[\begin{array}{c} ? \\ ? \\ ? \\ ? \\ ? \end{array} \right] + \beta \left[\begin{array}{c} ? \\ ? \\ ? \\ ? \\ ? \end{array} \right] + \gamma \left[\begin{array}{c} ? \\ ? \\ ? \\ ? \\ ? \end{array} \right] + \dots$$

where each $\alpha, \beta, \gamma, \delta, \dots$ is a free variable (either x_1 or... or x_5), and each column vector has specific numbers in it. $\text{Dim}(\text{SolnFlat}) = \underline{\dots}$.

Q3: Wed.
30 Sep Inverse of $\begin{bmatrix} 3 & 1 & 0 \\ 5 & 2 & 0 \\ 0 & 0 & 2 \end{bmatrix}$ is

$$\begin{bmatrix} \underline{\dots} & \underline{\dots} & \underline{\dots} \\ \underline{\dots} & \underline{\dots} & \underline{\dots} \\ \underline{\dots} & \underline{\dots} & \underline{\dots} \end{bmatrix}.$$

Q4: Mon. 05Oct Let R_θ be the std. rotation [by θ] matrix. With

$$C := \begin{bmatrix} \sqrt{3} & -1 \\ 1 & \sqrt{3} \end{bmatrix} \quad \text{and} \quad B := \begin{bmatrix} \sqrt{2} & -\sqrt{2} \\ \sqrt{2} & \sqrt{2} \end{bmatrix},$$

the product $[CB]^{22} = \alpha \cdot R_\theta$, with $\alpha = \dots \in \mathbb{R}_+$ and $\theta = \dots \in (-180^\circ, 180^\circ]$. [Hint: Don't multiply matrices. Geometrically, C and B represent what linear-trns?]

Q5: Tue. 06Oct Let $T: \mathbb{R}^2 \rightarrow \mathbb{R}^2$ rotate the plane CCW by 60° , then vertically stretch by a factor of 5. W.r.t the std basis,

$$[\![T]\!]_{\mathcal{E}}^{\mathcal{E}} = \begin{bmatrix} & & & \\ & \text{---} & | & \text{---} \\ & & & \end{bmatrix}.$$

Q6: Tue. 20Oct Let $T: \mathbb{R}^2 \rightarrow \mathbb{R}^2$ by $T\left(\begin{bmatrix} x \\ y \end{bmatrix}\right) := \begin{bmatrix} 3x - y \\ 2x + 6y \end{bmatrix}$. W.r.t ordered-basis $B := \left(\begin{bmatrix} 5 \\ 1 \end{bmatrix}, \begin{bmatrix} 3 \\ 1 \end{bmatrix}\right)$, let $M := [\![T]\!]_B^B$. Then $M = RTR^{-1}$,

$$\text{where } R = \begin{bmatrix} & & & \\ & \text{---} & | & \text{---} \\ & & & \end{bmatrix}, \quad M = \begin{bmatrix} & & & \\ & \text{---} & | & \text{---} \\ & & & \end{bmatrix}.$$

Q7: Tue. 20Oct In \mathbb{R}^3 , the closest point to $v := (1, 2, 3)$ on the line through $\mathbf{0}$ and $q := (-2, 7, 0)$, is αq , where $\alpha = \dots$

In \mathbb{R}^2 , with $s := (1, 8)$ and $w := (4, -2)$, compute $\text{Orth}_w(s) = \dots$

Q8: Mon. 30Nov Let $B := \begin{bmatrix} 1 & 2 & 1 & 0 & 1 \\ 3 & 6 & 0 & -3 & 0 \end{bmatrix}$. Then $R := \text{RREF}(B)$ is [show no work, here]

$$R = \left[\begin{array}{c|c|c|c|c} & & & & \\ \hline & & & & \\ \hline \end{array} \right].$$

I For subspace $V := \text{Nul}(L_B)$, use back-substitution, and *scaling*, to produce an integer basis

$$v_1 := \left(\begin{array}{c|c|c|c|c} & & & & \\ \hline & & & & \\ \hline \end{array} \right), \quad v_2 := \left(\begin{array}{c|c|c|c|c} & & & & \\ \hline & & & & \\ \hline \end{array} \right),$$

$$v_3 := \left(\begin{array}{c|c|c|c|c} & & & & \\ \hline & & & & \\ \hline \end{array} \right), \quad v_4 := \left(\begin{array}{c|c|c|c|c} & & & & \\ \hline & & & & \\ \hline \end{array} \right).$$

[Note: Only use as many as the dimension of V .]

II

Apply Gram-Schmidt to compute an **orthogonal integer-basis** for V :

$$b_1 := \left(\begin{array}{c|c|c|c|c} & & & & \\ \hline & & & & \\ \hline \end{array} \right), \quad b_2 := \left(\begin{array}{c|c|c|c|c} & & & & \\ \hline & & & & \\ \hline \end{array} \right),$$

$$b_3 := \left(\begin{array}{c|c|c|c|c} & & & & \\ \hline & & & & \\ \hline \end{array} \right), \quad b_4 := \left(\begin{array}{c|c|c|c|c} & & & & \\ \hline & & & & \\ \hline \end{array} \right).$$

[Entries are integers]

Arrange that the Gcd of the entries in each vector is 1, and that the first non-zero value is positive.

Q9: Tue. 08Dec Line $y = [\dots]x + \dots$ is the least-squares best-fit to data pts $\{(-2, 0), (-1, 0), (1, 0), (2, 1)\}$.

That's All, Folks!