

Q1: Wedn. 1 Sep Write $\text{Gcd}(266, 209)$ as a lin-combination, using

n	r_n	q_n	s_n	t_n
0	266	—	1	0
1	209		0	1
2				
3				
4				
5				

So $\text{Gcd}(266, 209) = \underline{\dots} \cdot 266 + \underline{\dots} \cdot 209$.

Q2: Fri. 3 Sep Since $M := 211$ is prime, ring \mathbb{Z}_{211} is a field. So the mod- M reciprocal of 9 is $R := \underline{\dots} \in [0..M]$. [IOWords, $9 \cdot R \equiv_{211} 1$ and $R \in [0..M]$.]

Q3: Fri. 17Sep Fix a field \mathbb{F} . A map $g: (\mathbb{H}, +, \mathbf{0}_H) \rightarrow (\mathbb{E}, +, \mathbf{0}_E)$ between two \mathbb{F} -VSes is \mathbb{F} -linear if [Remember quantification]:

[Imagine 3 blank lines].

Using set-builder notation, the *kernel* of g is:

$\text{Ker}(g) = \underline{\dots}$.

Q4: Tue. 21Sep Let $M := \begin{bmatrix} 0 & 0 & 1 & 1 & 3 \\ 1 & -4 & 5 & -1 & -32 \\ 0 & 0 & 5 & 4 & 6 \end{bmatrix}$. Working over field \mathbb{Z}_5 , matrix $RREF(M)$ equals [write entries in $[-2..2]$ please]

$$\left[\begin{array}{c|c|c|c|c} & & & & \\ \hline & & & & \\ \hline & & & & \end{array} \right]$$

Q5: Fri. 24Sep

a The 3×3 elem-matrix whose lefthand action adds 2 times row-1 to row-3 is $\left[\begin{array}{c|c|c} & & \\ \hline & & \\ \hline & & \end{array} \right]$.

b Fix a field \mathbb{F} . A map $f: (\mathbb{E}, +, \mathbf{0}_E) \rightarrow (\mathbb{H}, +, \mathbf{0}_H)$ between two \mathbb{F} -VSes is \mathbb{F} -linear if [Remember Qfn!]:

[Imagine 3 blank lines].

Q6: Mond. 27Sep Over field \mathbb{Z}_3 , polynomials $\mathbf{f}_1(x) := [x+1]^3$, $\mathbf{f}_2(x) := x^3 + x + 1$, $\mathbf{f}_3(x) := [x-1] \cdot [x+2]$, $\mathbf{f}_4(x) := x^2$, $\mathbf{f}_5(x) := x^3 + 2$. satisfy $\mathbf{f}_5 = \sum_{j=1}^4 \alpha_j \mathbf{f}_j$, where coeffs $\alpha_1 = \underline{\dots}$, $\alpha_2 = \underline{\dots}$, $\alpha_3 = \underline{\dots}$, $\alpha_4 = \underline{\dots}$, lie in \mathbb{Z}_3 .

Q7: Wed. 29Sep Poly $f(x) := \sum_{n=0}^3 \alpha_n x^n$ satisfies $f(7) = f(9) = f(-3) = 0$ and $f(4) = 5$. Then $\alpha_3 = \underline{\dots}$ and $\alpha_0 = \underline{\dots}$

[Write each α as $\frac{a \cdot b}{p \cdot q}$, a ratio of integer-products.]

Q8: Fri. 8Oct Let $T: \mathbb{R}^2 \rightarrow \mathbb{R}^2$ by $T\left(\begin{bmatrix} x \\ y \end{bmatrix}\right) := \begin{bmatrix} 3x - y \\ 2x + 6y \end{bmatrix}$. W.r.t ordered-basis $\mathcal{B} := \left(\begin{bmatrix} 3 \\ 1 \end{bmatrix}, \begin{bmatrix} 2 \\ 1 \end{bmatrix}\right)$, let $M := \llbracket T \rrbracket_{\mathcal{B}}^{\mathcal{B}}$. Then $M = RTR^{-1}$,

$$\text{where } R = \left[\begin{array}{c|c} & \\ \hline & \\ \hline & \end{array} \right], M = \left[\begin{array}{c|c} & \\ \hline & \\ \hline & \end{array} \right].$$

What I had intended was:

Let $T: \mathbb{R}^2 \rightarrow \mathbb{R}^2$ by $T\left(\begin{bmatrix} x \\ y \end{bmatrix}\right) := \begin{bmatrix} -x + 15y \\ -2x + 10y \end{bmatrix}$. W.r.t ordered-basis $\mathcal{B} := \left(\begin{bmatrix} 3 \\ 1 \end{bmatrix}, \begin{bmatrix} 2 \\ 1 \end{bmatrix}\right)$, let $M := \llbracket T \rrbracket_{\mathcal{B}}^{\mathcal{B}}$. Then $M = RTR^{-1}$,

$$\text{where } R = \left[\begin{array}{c|c} & \\ \hline & \\ \hline & \end{array} \right], M = \left[\begin{array}{c|c} & \\ \hline & \\ \hline & \end{array} \right].$$

EC: Mon. 18Oct Let R_θ be the std. rotation [by θ] matrix. With

$$C := \begin{bmatrix} \sqrt{3} & -1 \\ 1 & \sqrt{3} \end{bmatrix} \text{ and } B := \begin{bmatrix} \sqrt{2} & -\sqrt{2} \\ \sqrt{2} & \sqrt{2} \end{bmatrix},$$

the product $[CB]^{35} = \alpha \cdot R_\theta$, with $\alpha = \underline{\dots} \in \mathbb{R}_+$ and $\theta = \underline{\dots} \in (-180^\circ, 180^\circ]$. [Hint: Don't multiply matrices. Geometrically, C and B represent what linear-trns?]

Q9: Mon. 25Oct $\pi := [6, 7, 8, 1, 2, 3, 4, 5]$ has $\text{Sgn}(\pi) = +1 - 1$.

$$\text{Let } M(x) := \begin{bmatrix} 10 & 7x^4 - 8 & 3x - 2 \\ 2x - 8 & 9x - 2 & 5 \\ x^3 + 2 & x^5 - 2 & 8x \end{bmatrix}.$$

The high-order term of polynomial $\text{Det}(M(x))$ is Cx^N , where $C = \underline{\dots}$ and $N = \underline{\dots}$.

Q10: Tues. 26Oct Apply Cramer's Rule to give a formula for $x_2 = \underline{\dots}$.
ITO of B, C, D, E, z, y , where $\begin{bmatrix} B & C \\ D & E \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} z \\ 1+y \end{bmatrix}$.

Q11: Mond. 08Nov $\mu = \underline{\dots} \leq \nu = \underline{\dots}$ are the eigenvalues of $G := \begin{bmatrix} 2 & 3 \\ 4 & 1 \end{bmatrix}$. Let $D := \begin{bmatrix} \mu & 0 \\ 0 & \nu \end{bmatrix}$. Then $D = U^{-1}GU$ where the 2×2 integer matrix U is
 $U = \begin{bmatrix} \underline{\dots} & \underline{\dots} \\ \underline{\dots} & \underline{\dots} \end{bmatrix}$.

ED: Wedn. 17Nov The point $P := (-3, 1)$, in the plane, has orthogonal projection $Q := (\underline{\dots}, \underline{\dots})$ on \mathbb{L} , the line $y = -5 + 2x$. [Check that $Q \in \mathbb{L}$ and $[P-Q] \perp \mathbb{L}$.]

E12: Tue. 23Nov On \mathbf{V} , the VS of 2-topped real polynomials, put $\text{IP } \langle f, g \rangle := \int_0^1 [f \cdot g]$. The two polys 1 and x form a basis for \mathbf{V} . Define a linear-fnc'al $L: \mathbf{V} \rightarrow \mathbb{R}$ by $L(1) := 3$ and $L(x) := 5$. The general theory tells us there is a (unique) poly $h \in \mathbf{V}$ st. $\langle h, \cdot \rangle = L(\cdot)$. So $h(x) = S + Tx$ for numbers $S = \underline{\dots}$ and $T = \underline{\dots}$.

E13: Mon. 29Nov Line $y = \underline{\dots} x + \underline{\dots}$ is the least-squares best-fit to data pts $\{(-2, 0), (-1, 0), (1, 0), (2, 1)\}$.

$\|u\| = \underline{\dots}$ and $\langle u, w \rangle = \underline{\dots}$. Thus $p := \text{Proj}_u(w) = \underline{\dots}$ and $r := \text{Orth}_u(w) = \underline{\dots}$.

[Hint: $\text{Proj}_u(p)$ should equal p . DYC check $r \perp p$?]

L3 The point $P := (5, -1)$, in the plane, has orthogonal proj. $\text{Proj}(P) = (\underline{\dots}, \underline{\dots})$ on the line $y = 1 + 3x$.

e1 $\mu = \underline{\dots} \leq \nu = \underline{\dots}$ are the eigenvalues of $G := \begin{bmatrix} -1 & 8 \\ 2 & -1 \end{bmatrix}$. Let $D := \begin{bmatrix} \mu & 0 \\ 0 & \nu \end{bmatrix}$. Then $D = U^{-1}GU$ where the 2×2 integer matrix U is
 $U = \begin{bmatrix} \underline{\dots} & \underline{\dots} \\ \underline{\dots} & \underline{\dots} \end{bmatrix}$.

e2 $M := \begin{bmatrix} -5 & 3 & 18 \\ -2 & 0 & 12 \\ -4 & 4 & 7 \end{bmatrix}$ has three real eigenvalues, $\alpha = \underline{\dots} \leq \beta = \underline{\dots} \leq \gamma = \underline{\dots}$.
Hence $\begin{bmatrix} \alpha & 0 & 0 \\ 0 & \beta & 0 \\ 0 & 0 & \gamma \end{bmatrix} = U^{-1}MU$, where

$$U = \begin{bmatrix} \underline{\dots} & \underline{\dots} & \underline{\dots} \\ \underline{\dots} & \underline{\dots} & \underline{\dots} \\ \underline{\dots} & \underline{\dots} & \underline{\dots} \end{bmatrix}.$$

CB1 With C the change-of-basis matrix from $\mathcal{E} := (1, x, x^2)$ to $\mathcal{B} := (3x + 5x^2, x + 2x^2, 1)$, then C^{-1} equals

$$\begin{bmatrix} \underline{\dots} & \underline{\dots} & \underline{\dots} \\ \underline{\dots} & \underline{\dots} & \underline{\dots} \\ \underline{\dots} & \underline{\dots} & \underline{\dots} \end{bmatrix}, C = \begin{bmatrix} \underline{\dots} & \underline{\dots} & \underline{\dots} \\ \underline{\dots} & \underline{\dots} & \underline{\dots} \\ \underline{\dots} & \underline{\dots} & \underline{\dots} \end{bmatrix}.$$

CR Matrix $M = \begin{bmatrix} A & B \\ C & D \end{bmatrix}$, where A and D are 5×5 and 7×7 , resp. Suppose C is the 7×5 zero-matrix. Prove that $\text{Det}(M) = \text{Det}(A) \cdot \text{Det}(D)$. [Hint: A good picture helps.]

VS1 Below, $\mathbf{V}, \mathbf{W}, \mathbf{E}$ are real vectorspaces.

a A map $f: \mathbf{V} \times \mathbf{W} \rightarrow \mathbf{E}$ is **bilinear** if...

b A map $\langle \cdot, \cdot \rangle$ from $\mathbf{V} \times \mathbf{V} \rightarrow \mathbb{R}$ is an **inner product** if...

R0 Let $M := \begin{bmatrix} 1 & 5 & -1 \\ 3 & 0 & -6 \\ -2 & -1 & 1 \end{bmatrix}$. Viewing M as a *rational* matrix, compute:

A basis \mathcal{R} for $\text{RowNullspace}(M)$.

A basis \mathcal{C} for $\text{ColSpan}(M)$. Now write each M -col as an *explicit* linear-comb. of vectors in your \mathcal{C} .

Finally, interpret M as a \mathbb{Z}_7 -matrix, and answer the same three questions.

p0 OYOP, write out the following sentences, and complete them to give the correct definitions. Be specific with phrases “each”, “every”, “all”, “there exists”, etc.. *Avoid* the word “any”. Use “**there exists**” in preference to “some”.

A (possibly infinite) set $\mathcal{S} \subset \mathbf{V}$ of vectors is **linearly dependent** IFF ...

Vector \mathbf{w} is in the **span** of $\{\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_K\}$ IFF ...

A $K \times N$ matrix \mathbf{U} is in **reduced row echelon form** IFF ...

The **nullspace** of $\mathbf{T}: \mathbf{V} \rightarrow \mathbf{W}$ is the set of all ...

l Poly $h(x) := \sum_{n=0}^2 V_n x^n$ satisfies $h(1)=4$, $h(2)=9$, $h(-1)=6$. Then $V_0 = \dots$, $V_1 = \dots$, $V_2 = \dots$.

s A system of 3 linear equations in unknowns x_1, \dots, x_5 reduces to the augmented matrix

$\begin{bmatrix} 1 & 1 & 0 & 0 & 1 & | & 12 \\ 0 & 0 & 1 & 0 & -8 & | & 34 \\ 0 & 0 & 0 & 1 & 5 & | & -56 \end{bmatrix}$, which is in RREF. Please (circle) each pivot entry.

OYOP, describe the *general solution* in this form,

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{bmatrix} = \begin{bmatrix} ? \\ ? \\ ? \\ ? \\ ? \end{bmatrix} + \alpha \begin{bmatrix} ? \\ ? \\ ? \\ ? \\ ? \end{bmatrix} + \beta \begin{bmatrix} ? \\ ? \\ ? \\ ? \\ ? \end{bmatrix} + \gamma \begin{bmatrix} ? \\ ? \\ ? \\ ? \\ ? \end{bmatrix} + \dots$$

where each $\alpha, \beta, \gamma, \delta, \dots$ is a free variable (either x_1 or... or x_5), and each column vector has specific numbers in it. $\text{Dim}(\text{SolnFlat}) = \dots$

m1 Matrix-product $\begin{bmatrix} b \\ c \end{bmatrix} \cdot \begin{bmatrix} x & y \end{bmatrix} = \dots$

m2 The matrix-product $\begin{bmatrix} 2 & 1 & 4 \\ 0 & -1 & 1 \\ -2 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} \sqrt{2} & 0 & \sqrt{2} \\ 0 & -1 & 5 \end{bmatrix}$ equals

m3 Find 2×2 matrices \mathbf{E} and \mathbf{G} with $\mathbf{E}^2 = \mathbf{G}^2$ unequal to $[\mathbf{E} - \mathbf{G}] \cdot [\mathbf{E} + \mathbf{G}]$: $\mathbf{E} := \dots$, $\mathbf{G} := \dots$

$\mathbf{E}^2 - \mathbf{G}^2 = \dots$, $[\mathbf{E} - \mathbf{G}] \cdot [\mathbf{E} + \mathbf{G}] = \dots$

m4 A 2×2 matrix \mathbf{E} has $\mathbf{E}^2 = \mathbf{0}$ (the zero-matrix). Then \mathbf{E} itself must be $\mathbf{0}$. **Circle**: T F

m5 $M := \begin{bmatrix} 70 & 7 \\ 1 & 2 \end{bmatrix}$. Compute M^{-1} over these three fields. [Write your \mathbb{Z}_p answers using symmetric residues.]

Over \mathbb{Z}_5 : $M^{-1} = \dots$. Over \mathbb{Z}_7 : $M^{-1} = \dots$

Over \mathbb{Q} : $M^{-1} = \dots$

m6 Mats $\mathbf{U} = \begin{bmatrix} \dots & \dots \\ \dots & \dots \end{bmatrix}$, $\mathbf{V} = \begin{bmatrix} \dots & \dots \\ \dots & \dots \end{bmatrix}$, $\mathbf{W} = \begin{bmatrix} \dots & \dots \\ \dots & \dots \end{bmatrix}$,

are \mathbb{R} -matrices such that $\mathbf{U}^2 \neq \mathbf{V}^2$, yet $\mathbf{U}^3 = \mathbf{V}^3$.

m7 Consider these two matrices:

$$\mathbf{R} := \begin{bmatrix} \sqrt{3}/2 & -1/2 \\ 1/2 & \sqrt{3}/2 \end{bmatrix} \quad \text{and} \quad \mathbf{A} := \begin{bmatrix} 1/\sqrt{2} & -1/\sqrt{2} \\ 1/\sqrt{2} & 1/\sqrt{2} \end{bmatrix}.$$

Product matrix

$$[\mathbf{RA}]^{40} = \begin{bmatrix} \dots & \dots \\ \dots & \dots \end{bmatrix}.$$

[Hint: You don't need multiply matrices. Geometrically, what motion do these matrices represent?]

m8 Consider these two matrices:

$$\mathbf{C} := \frac{1}{2} \cdot \begin{bmatrix} \sqrt{3} & -1 \\ 1 & \sqrt{3} \end{bmatrix} \quad \text{and} \quad \mathbf{B} := \frac{1}{2} \cdot \begin{bmatrix} \sqrt{2} & \sqrt{2} \\ -\sqrt{2} & \sqrt{2} \end{bmatrix}.$$

Determine the matrix $[\mathbf{CB}]^{44} = \dots$

[Hint: You don't need multiply matrices. Geometrically, what motion do these matrices represent?]

m9 Consider a linear map $T: \mathbb{R}^3 \rightarrow \mathbb{R}^2$. Let $\{\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3\}$ be the standard basis for \mathbb{R}^3 , and let $\{\mathbf{v}_1, \mathbf{v}_2\}$ be the standard basis for \mathbb{R}^2 . Suppose that $T(\mathbf{e}_1) = 17\mathbf{v}_1 - 2\mathbf{v}_2$ and $T(\mathbf{e}_2) = 6\mathbf{v}_2$ and $T(\mathbf{e}_3) = -4\mathbf{v}_1 - 3\mathbf{v}_2$.

Then the matrix of T is:

m10 Shear the plane *vertically*, sending \mathbf{e}_1 to $\mathbf{e}_1 + 3\mathbf{e}_2$, followed by the *horizontal* shear which sends \mathbf{e}_2 to $-2\mathbf{e}_1 + \mathbf{e}_2$. Let \mathbf{S} be the 2×2 matrix whose effect is the preceding composition of shears.

Then $\mathbf{S} = \begin{bmatrix} & & & \\ & & & \\ & & & \\ & & & \end{bmatrix}$.

R1 Let $\mathbf{M} := \begin{bmatrix} 0 & 0 & 5 & 3 & 0 \\ 5 & 3 & 5 & 2 & 0 \\ 5 & 3 & 1 & 1 & 3 \end{bmatrix}$. Working over field \mathbb{Z}_{13} , matrix $RREF(\mathbf{M})$ equals [write entries in $[-6..6]$ please]

$$\begin{bmatrix} & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \end{bmatrix}$$

R2 Let $\mathbf{v}_1 := \begin{bmatrix} 0 \\ 1 \\ -1 \end{bmatrix}$, $\mathbf{v}_2 := \begin{bmatrix} 2 \\ 1 \\ -2 \end{bmatrix}$, $\mathbf{v}_3 := \begin{bmatrix} 4 \\ Y \\ 3 \end{bmatrix}$. Our \mathbf{v}_3 is in $\text{Span}(\mathbf{v}_1, \mathbf{v}_2)$ when number $Y = \underline{\dots}$. And then, $\mathbf{v}_3 = \alpha\mathbf{v}_1 + \beta\mathbf{v}_2$, where $\alpha = \underline{\dots}$ and $\beta = \underline{\dots}$.

R3 Let $\mathbf{v}_1 := \begin{bmatrix} 0 \\ -1 \\ 0 \end{bmatrix}$, $\mathbf{v}_2 := \begin{bmatrix} 2 \\ \frac{1}{2} \\ 3 \end{bmatrix}$, $\mathbf{v}_3 := \begin{bmatrix} 4 \\ W \\ Y \end{bmatrix}$, So $\mathbf{v}_3 \in \text{Span}(\mathbf{v}_1, \mathbf{v}_2)$ when $W = \underline{\dots}$ & $Y = \underline{\dots}$.

And $\mathbf{v}_3 = \alpha\mathbf{v}_1 + \beta\mathbf{v}_2$, where $\alpha = \underline{\dots}$ and $\beta = \underline{\dots}$.

V1 Inverse of $\begin{bmatrix} 1 & -6 & -7 \\ & -3 & 1 \end{bmatrix}$ is $\begin{bmatrix} & & \\ & & \\ & & \end{bmatrix}$.

V2 Inverse of $\begin{bmatrix} 6 & -7 & -7 \\ 3 & -4 & -2 \\ 1 & -3 & 4 \end{bmatrix}$ is

$$\begin{bmatrix} & & \\ & & \\ & & \end{bmatrix}$$

V3 Over \mathbb{Q} , the inverse of $\mathbf{E} := \begin{bmatrix} 1 & x & z \\ & 1 & y \\ & & 1 \end{bmatrix}$ is

$$\begin{bmatrix} & & \\ & & \\ & & \end{bmatrix}$$

E The 3×3 elem-matrix whose lefthand action adds

8 times row-2 to row-1 is $\begin{bmatrix} & & \\ & & \\ & & \end{bmatrix}$.

d1 Suppose \mathbf{C} and \mathbf{A} are 3×3 matrices s.t $\text{Det}(\mathbf{C}) = \frac{1}{2}$ and $\text{Det}(\mathbf{A}) = 5$. Then

$\text{Det}(\mathbf{C}^{-1} \mathbf{A} \mathbf{C}^t \mathbf{A}^t \mathbf{C}^t) = \underline{\dots}$.

Definitions, and their application

Use \mathbb{F} for a general field, and \mathbf{V} is an \mathbb{F} -VS.

p1 A collection $\{\mathbf{u}_1, \dots, \mathbf{u}_{17}\} \subset \mathbf{V}$ is *linearly independent* (over \mathbb{F}) if: (Qfn!)

[Imagine 3 blank lines].

p2 For a subset $S \subset \mathbf{V}$ write $\text{Span}(S)$ using set-builder notation. [Note: S can be infinite.]

p3 Let c_1, \dots, c_5 be the columns of $\mathbf{M} := \begin{bmatrix} 27 & -108 & 5 & 2 & 177 \\ 5 & -20 & 29 & 17 & 14 \\ 2 & -8 & 17 & 10 & 2 \end{bmatrix}$. Now $RREF(\mathbf{M})$ equals

$\mathbf{R} := \begin{bmatrix} 1 & -4 & 0 & 0 & 7 \\ 0 & 0 & 1 & 0 & -6 \\ 0 & 0 & 0 & 1 & 9 \end{bmatrix}$. Using the minimum of columns,

write $\begin{bmatrix} 177 \\ 14 \\ 2 \end{bmatrix} = \underline{\dots} c_1 + \underline{\dots} c_2 + \underline{\dots} c_3 + \underline{\dots} c_4$.

p4 For $\mathbf{w}, \mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_{35} \in \mathbf{V}$, saying that \mathbf{w} is an **affine combination (over \mathbb{F})** of $\mathbf{u}_1, \dots, \mathbf{u}_{35}$ means (Qfn!) [Imagine 3 blank lines].

Aff Glued to a massless plate is a 10 lb weight at the origin, a 15 lb weight at the point $(3, -1)$, and 5 lb at point (\dots, \dots) , thus putting the center-of-mass of the weighted-plate at $(2, 1)$.

p5 A subset $S \subset \mathbf{V}$ is “a **flat**” if: [Imagine 3 blank lines].

LI: *Here*, let **AT** mean “Always True”, **AF** mean “Always False” and **Nei** mean “Neither always true nor always false”. Below, $\mathbf{v}, \mathbf{w}, \mathbf{x}$ repr. *distinct, non-zero* vectors in \mathbb{R}^4 , a \mathbb{R} -VS. Please the correct response:

y1 If $\mathbf{x} \notin \text{Span}\{\mathbf{v}, \mathbf{w}\}$ then $\{\mathbf{v}, \mathbf{w}, \mathbf{x}\}$ is linearly independent. **AT** **AF** **Nei**

y2 Collection $\{\mathbf{0}, \mathbf{x}\}$ is linearly-independent. **AT** **AF** **Nei**

y3 $\text{Span}\{\mathbf{v}, \mathbf{w}, \mathbf{x}, \mathbf{v} + 2\mathbf{w} + 3\mathbf{x}\}$ is all of \mathbb{R}^4 . **AT** **AF** **Nei**

y4 If none of $\mathbf{v}, \mathbf{w}, \mathbf{x}$ is a multiple of the other vectors, then $\{\mathbf{v}, \mathbf{w}, \mathbf{x}\}$ is linearly independent. **AT** **AF** **Nei**