

circle one

“Yes!” “Of course!”

Q1: Wed. 11 Jan The **slope** of line $3[y - 5] = 2[x - 2]$ is $\boxed{\dots}$.
Point $(-4, y)$ lies on this line, where $y = \boxed{\dots}$.

Q2: Mon. 23 Jan Vertices $A := (8, 4), B := (-6, -2), C := (-2, -2)$ form a \triangle whose A -median has eqn $y = \boxed{\dots} \cdot x + \boxed{\dots}$.
The \triangle ’s centroid is $(\boxed{\dots}, \boxed{\dots})$.

Q3: Wed. 14 Mar A triangle has orthocenter $(7, 2)$ and circumcenter $(1, 20)$. So Centroid = $(\boxed{\dots}, \boxed{\dots})$.

[Hint: Was given on π Day, March 14]

Q4: Fri. 16 Mar With $d(\cdot, \cdot)$ the usual metric on the plane, use $\text{Ball}_r(Q)$ for the radius- r (open) ball centered at a point $Q \in \mathbb{R}^2$. The **interior** of a subset $S \subset \mathbb{R}^2$ was defined as

$$\{P \in \mathbb{R}^2 \mid \boxed{\dots} \}$$

Q5: Wed. 21 Mar With $d(\cdot, \cdot)$ the usual metric on the plane, use $\text{Ball}_\rho(S)$ for the radius- ρ (open) ball centered at a point $S \in \mathbb{R}^2$. The **boundary** of a subset $\Omega \subset \mathbb{R}^2$ was defined as

$$\{Q \in \mathbb{R}^2 \mid \boxed{\dots} \}$$

One possible answer is:

$\{Q \in \mathbb{R}^2 \mid \forall r > 0, \text{intersections } \text{Ball}_r(Q) \cap \Omega \text{ and } \text{Ball}_r(Q) \cap [\mathbb{R}^2 \setminus \Omega] \text{ are non-empty}\}$.

An alternative to word “non-empty” is:

$\text{Ball}_r(Q) \cap \Omega \neq \emptyset$, etc.

Q6: Wed. 28 Mar With respect to \mathbf{C} , the circle $[x - 2]^2 + y^2 = 17$, and the $Q := (3, 3)$ point, $\text{Power}_{\mathbf{C}}(Q) = \boxed{\dots}$.

Distinct points $X, Y \in \mathbf{C}$ are colinear with Q , and $\text{Dist}(Q, X) = 2$. So $\text{Dist}(Q, Y) = \boxed{\dots}$.

Q8: Fri. 20 Apr Affine map $G := \begin{bmatrix} M & T \\ 0 & 1 \end{bmatrix}$ takes $A := \begin{bmatrix} 5 \\ 4 \end{bmatrix} \rightarrow P := \begin{bmatrix} 1 \\ 0 \end{bmatrix}$, $B := \begin{bmatrix} 7 \\ 4 \end{bmatrix} \rightarrow Q := \begin{bmatrix} 0 \\ 0 \end{bmatrix}$, and $C := \begin{bmatrix} 5 \\ 8 \end{bmatrix} \rightarrow R := \begin{bmatrix} 0 \\ 1 \end{bmatrix}$. Hence

$$M = \begin{bmatrix} \boxed{\dots} & \boxed{\dots} \\ \boxed{\dots} & \boxed{\dots} \end{bmatrix} \quad \text{and} \quad T = \begin{bmatrix} \boxed{\dots} \\ \boxed{\dots} \end{bmatrix}.$$

Q9: Mnd. 16 Apr ? *Solve all of the World’s Problems.*